Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe an algorithm that determines whether a function from a finite set of integers to another finite set of integers is onto.

Short Answer

Expert verified

An algorithm that determines whether a function from a finite set of integers to another finite set of integers is onto, can be given as below:

\user1procedure onto fxX=x1,x2,...,xn,y=y1,y2,...,ym:setofintegers

\user1fori:=1 to m

Algorithm will return false if given function is not onto function, otherwise, it will return true.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Steps Algorithm follows

Steps that algorithm has to follow are:

  1. We will use for loop to select element from Y having condition i = 1 to m . Then, use another for loop to select element from X , having condition j = 1 to n .
  2. Then if statement will check that every element in has corresponding element in X . Condition for if loop will befxj=yi .
  3. We use one variable c to count how many elements Y in have corresponding element in X . If there is no corresponding value in X for any element in Y i.e., then algorithm will return false, otherwise it will return true.
02

Step 2:

The algorithm based on above conditions given as below:

\user1 procedure onto_fxX=x1,x2,....,xn,y=y1,y2,...,ym:setofintegers

\user1 fori:=1to m

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free