Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let \(k\)be a positive integer. Show that \({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ is }}O({n^{k + 1}})\).

Short Answer

Expert verified

By using mathematical operations on \({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ }}\), we prove that \({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ is }}O({n^{k + 1}})\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1:

Let \(k\) be a positive integer.

Using \({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ }}\), we get that,

\(|{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ }}| = {1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ }}\),

Now

\(\begin{array}{l} \Rightarrow |{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{|}} \le {n^k} + {n^k} + {n^k} + ... + {n^k}\\ \Rightarrow |{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{|}} \le n.{n^k}\\ \Rightarrow |{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{|}} \le {n^{k + 1}}\\ \Rightarrow |{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{|}} \le 1.|{n^{k + 1}}|\end{array}\)

02

Step 2:

Now, if we compare \( \Rightarrow |{1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{|}} \le 1.|{n^{k + 1}}|\) with the definition of Big-O Notation that is

\(|f(x)| \le C|g(x)|\), we can imply that

\({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ is }}O({n^{k + 1}})\)with constants \(C = 1{\rm{ and }}k = 1\).

We have shown that \({1^k} + {2^k} + \cdot \cdot \cdot + {n^k}{\rm{ is }}O({n^{k + 1}})\)with constants \(C = 1{\rm{ and }}k = 1\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free