Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether\({x^3}\) is\(O(g(x))\)for each of these functions\(g(x)\)

a)\(\;g(x) = {x^2}\)

b)\(g(x) = {x^3}\)

c)\(g(x) = {x^2} + {x^3}\)

d) \(g(x) = {x^2} + {x^4}\)

e)\(g(x) = {3^x}\)

f)\(g(x) = {x^3}/2\)

Short Answer

Expert verified

a)\(f(x) = {x^3}\)is not\(O({x^2})\)

b)\(f(x) = {x^3}\)is\(O({x^3})\)

c)\(f(x) = {x^3}\)is\(O({x^3} + {x^2})\)

d)\(f(x) = {x^3}\)is\(O({x^2} + {x^4})\)

e)\(f(x) = {x^3}\)is\(O({3^x})\)

f) \(f(x) = {x^3}\) is \(O\left( {\frac{{{x^3}}}{2}} \right)\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Subpart (a): \(\;g(x) = {x^2}\)Step 1:

It is given that\(f(x) = {x^3}\)and\(\;g(x) = {x^2}\)

Assuming\(f(x) = {x^3}\)is \(O({x^2})\)

\( \Rightarrow \left| {{x^3}} \right| \le C\left| {{x^2}} \right|\)

02

Step 2:

Taking\(C \ge 0\)

\( \Rightarrow \left| {{x^3}} \right| \le C\left| {{x^2}} \right| = \left| {C{x^2}} \right|\)

Here we are getting a contradiction

\( \Rightarrow \)\(f(x) = {x^3}\) is not \(O({x^2})\)

03

Subpart (b): \(g(x) = {x^3}\)Step 1:

It is given that\(f(x) = {x^3}\)and\(\;g(x) = {x^2}\)

Let\(k = 0\)

\( \Rightarrow f(x) = \left| {{x^3}} \right| = \left| {g(x)} \right|\)

04

(b) Step 2:

From above we get\(C = 1\)

\( \Rightarrow \)\(f(x) = {x^3}\) is \(O({x^3})\) with \(k = 0\) and \(C = 1\)

05

Subpart (c): \(g(x) = {x^2} + {x^3}\)Step 1:

It is given that\(f(x) = {x^3}\)and\(g(x) = {x^2} + {x^3}\)

Let\(k = 0\)

\( \Rightarrow f(x) = \left| {{x^3}} \right| = \left| {0 + {x^3}} \right|\)

\( < \left| {{x^2} + {x^3}} \right| = \left| {g(x)} \right|\)

06

(c) Step 2:

From above we get\(C = 1\)

\(f(x) = {x^3}\) is \(O({x^3} + {x^2})\)with \(k = 0\) and \(C = 1\)

07

Subpart (d): \(g(x) = {x^2} + {x^4}\)Step 1:

It is given that\(f(x) = {x^3}\)and\(g(x) = {x^2} + {x^4}\)

Let\(k = 1\)

\(\begin{array}{l} = 0 + {x^4}\\ \le {x^2} + {x^4}\\ = \left| {{x^2} + {x^4}} \right|\end{array}\)

08

(d) Step 2:

From above we get\(C = 1\)

\(f(x) = {x^3}\) is \(O({x^2} + {x^4})\) with \(C = 1\) and \(k = 1\)

09

Subpart (e): \(g(x) = {3^x}\)Step 1:

It is given that\(f(x) = {x^3}\)and\(g(x) = {3^x}\)

When\(x > 3\)we have property\({3^x} > {x^3}\)

Let\(k = 3\)

\(\begin{array}{l}\left| {f(x)} \right| = \left| {{x^3}} \right|\\ = {x^3}\\ < {3^x}\\ = \left| {{3^x}} \right|\end{array}\)

10

(e) Step 2:

From above we get\(C = 1\)

\(f(x) = {x^3}\) is \(O({3^x})\) with \(C = 1\) and \(k = 3\)

11

Subpart (f): \(g(x) = {x^3}/2\)Step 1:

It is given that\(f(x) = {x^3}\)and\(g(x) = {x^3}/2\)

Let\(k = 0\)

\(\begin{array}{l}\left| {f(x)} \right| = \left| {{x^3}} \right|\\ = {x^2}\\ = 2\left( {\frac{{{x^3}}}{2}} \right)\\ = 2\left| {\frac{{{x^3}}}{2}} \right|\\ = 2\left| {g(x)} \right|\end{array}\)

12

(f) Step 2:

From above we get\(C = 2\)

\(f(x) = {x^3}\) is \(O\left( {\frac{{{x^3}}}{2}} \right)\) with \(C = 2\) and \(k = 0\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free