Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that \(3{x^4} + 1\) is \(O({x^4}/2)\) and \({x^4}/2\)is not \(O(3{x^4} + 1)\).

Short Answer

Expert verified

Hence, we obtain\(3{x^4} + 1\)is\(O({x^4}/2)\)and\({x^4}/2\)is not\(O(3{x^4} + 1)\).

Step by step solution

01

Step 1:

Let\(f(x) = 3{x^4} + 1\)and\(g(x) = \frac{{{x^4}}}{2}\)

Assuming\(k = 1\)

Then,\(\left| {f(x)} \right| = \left| {3{x^4} + 1} \right|\)

\( \le \left| {3{x^4}} \right| + \left| 1 \right|\)

\( \Rightarrow C = 8\)

\( \Rightarrow f(x) = 3{x^4} + 1\) is \(O(\frac{{{x^4}}}{2})\)

02

Step 2:

Let\(f(x) = \frac{{{x^4}}}{2}\)and\(g(x) = 3{x^4} + 1\)

Let\(k = 1\)

\(\begin{array}{l} \Rightarrow \left| {f(x)} \right| = \left| {\frac{{{x^4}}}{2}} \right|\\ = \frac{{{x^4}}}{2}\end{array}\)

\( \Rightarrow \)\(f(x) = \frac{{{x^4}}}{2}\)is \(O(3{x^4} + 1)\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free