Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({\left( {{x^2} + 1} \right)^3}\)

b) \({(3x - 1)^3}\)

c) \(1/\left( {1 - 2{x^2}} \right)\)

d) \({x^2}/{(1 - x)^3}\)

e) \(x - 1 + (1/(1 - 3x))\)

f) \(\left( {1 + {x^3}} \right)/{(1 + x)^3}\)

g) \(x/\left( {1 + x + {x^2}} \right)\)

h) \({e^{3{x^2}}} - 1\)

Short Answer

Expert verified

(a) The required result is\({a_0} = 1,{a_2} = 3,{a_4} = 3,{a_6} = 1,{\rm{otherwise}}\,\,{a_n} = 0\).

(b) The required result is\({a_0} = - 1,{a_1} = 9,{a_2} = - 27,{a_3} = 27,\,\,{\rm{otherwise}}\,\,{a_n} = 0\).

(c) The required result is\({a_n} = {2^k}\)when\(n\)even and\(n \ge 0,{a_n} = 0\)when\(n\)odd and\(n \ge 0\).

(d)The required result is:

\({a_0} = {a_1} = 0,{a_n} = \left( {\begin{array}{*{20}{c}}n\\{n - 2}\end{array}} \right) = \frac{{n(n - 1)}}{2},n = 2,3,4, \ldots \)

(e)\({a_0} = 0,{a_1} = 4,{a_n} = {3^n},n = 2,3,4, \ldots \)

(f)The required result is:

\({a_0} = 1,{a_1} = - 3,{a_2} = 6,{a_n} = \left( {\left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{k - 1}\\{k - 3}\end{array}} \right)} \right){( - 1)^k}{\rm{ when }}n{\rm{ is a multiple of }}4{\rm{ and }}n \ge 3\).

(g)The required result is:

\(\begin{array}{*{20}{l}}{{a_n} = 1}&{{\rm{ when }}n\,\bmod \,3 = 1}\\{{a_n} = - 1}&{{\rm{ when }}n\,\bmod \,3 = 2}\\{{a_n} = 0}&{{\rm{ when }}n\,\bmod \,3 = 0}\end{array}\)

(h) The required result is\({a_n} = \frac{{{3^k}}}{{k!}}\) when \(n\) even and \(n > 0,{a_n} = 0\) otherwise

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Formula of generating function and binomial theorem

Generating function for the sequence\({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Binomial theorem:

\({(x + y)^n} = \sum\limits_{j = 0}^n {\left( {\begin{array}{*{20}{l}}n\\j\end{array}} \right)} {x^{n - j}}{y^j}\)

02

Use the definition of a generating function and binomial theorem to solve the sequence

(a)

For the sequence:

\({\left( {{x^2} + 1} \right)^3}\)

Use binomial theorem:

\(\begin{array}{l}{\left( {{x^2} + 1} \right)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){\left( {{x^2}} \right)^{3 - 0}}{(1)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){\left( {{x^2}} \right)^{3 - 1}}{(1)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){\left( {{x^2}} \right)^{3 - 2}}{(1)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){\left( {{x^2}} \right)^{3 - 3}}{(1)^3}\\{\left( {{x^2} + 1} \right)^3} = 1 + 3{x^2} + 3{x^4} + {x^6}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 1\)

\({a_2} = 3\)

\({a_4} = 3\)

\({a_6} = 1\)

\({a_n} = 0\) otherwise.

03

Use the definition of a generating function and binomial theorem to solve the sequence

(b)

For the sequence:

\({(3x - 1)^3}\)

Use the binomial theorem:

\(\begin{array}{c}{(3x - 1)^3} = {(3x + ( - 1))^3}\\{(3x - 1)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){(3x)^{3 - 0}}{(1)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){(3x)^{3 - 1}}{(1)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){(3x)^{3 - 2}}{(1)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){(3x)^{3 - 3}}{(1)^3}\\{(3x - 1)^3} = - 1 + 9x - 27{x^2} + 27{x^3}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = - 1\)

\({a_1} = 9\)

\({a_2} = - 27\)

\({a_3} = 27\)

\({a_n} = 0\) Otherwise.

04

Use the definition of a generating function and binomial theorem to solve the sequence

(c)

For the sequence:

\(1/\left( {1 - 2{x^2}} \right)\)

Use the binomial theorem:

\(\begin{array}{l}\frac{1}{{1 - 2{x^2}}} = \sum\limits_{k = 0}^{ + \infty } {{{\left( {2{x^2}} \right)}^k}} \\\frac{1}{{1 - 2{x^2}}} = \sum\limits_{k = 0}^{ + \infty } {{2^k}} {x^{2k}}\end{array}\)

The generating function is of the form:

\(\begin{array}{c}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_n} = {2^k}\)When\(n\)even and\(n \ge 0\).

\({a_n} = 0\)When\(n\)odd and\(n \ge 0\).

05

Use the definition of a generating function and binomial theorem to solve the sequence

(d)

For the sequence:

\({x^2}/{(1 - x)^3}\)

Use the binomial theorem:

\(\sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n + k - 1}\\k\end{array}} \right)} {x^k} = \frac{1}{{{{(1 - x)}^n}}}\)

\(\begin{array}{c}\frac{{{x^2}}}{{{{(1 - x)}^3}}} = {x^2} \cdot \frac{1}{{{{(1 - x)}^3}}}\\\frac{{{x^2}}}{{{{(1 - x)}^3}}} = {x^2} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{3 + k - 1}\\k\end{array}} \right)} {x^k}\\\frac{{{x^2}}}{{{{(1 - x)}^3}}} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right)} {x^{k + 2}}\\\frac{{{x^2}}}{{{{(1 - x)}^3}}} = \sum\limits_{m = 2}^{ + \infty } {\left( {\begin{array}{*{20}{c}}m\\{m - 2}\end{array}} \right)} {x^m}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = {a_1} = 0\)

\(\begin{array}{l}{a_n} = \left( {\begin{array}{*{20}{c}}n\\{n - 2}\end{array}} \right)\\{a_n} = \frac{{n(n - 1)}}{2}\end{array}\)

\(n = 2,3,4, \ldots \)

06

Use the definition of a generating function and binomial theorem to solve the sequence

(e)

For the sequence:

\(x - 1 + (1/(1 - 3x))\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(x - 1 + \frac{1}{{1 - 3x}} = x - 1 + \sum\limits_{k = 0}^{ + \infty } {{{(3x)}^k}} \)

\(x - 1 + \frac{1}{{1 - 3x}} = 4x + \sum\limits_{k = 2}^{ + \infty } {{3^k}} {x^k}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 0\)

\({a_1} = 4\)

\({a_n} = {3^n},n = 2,3,4, \ldots \)

07

Use the definition of a generating function and binomial theorem to solve the sequence

(f)

For the sequence:

\(\left( {1 + {x^3}} \right)/{(1 + x)^3}\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{1 + {x^3}}}{{{{(1 + x)}^3}}} = \left( {1 + {x^3}} \right) \cdot \frac{1}{{{{(1 - ( - x))}^3}}}\)

\(\frac{{1 + {x^3}}}{{{{(1 + x)}^3}}} = 1 - 3x + 6{x^2} + \sum\limits_{k = 3}^{ + \infty } {\left( {\left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{k - 1}\\{k - 3}\end{array}} \right)} \right)} {( - 1)^k}{x^k}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 1\)

\({a_1} = - 3\)

\({a_2} = 6\)

\({a_n} = \left( {\left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{k - 1}\\{k - 3}\end{array}} \right)} \right){( - 1)^k}\)when\(n\)is a multiple of 4 and\(n \ge 3\).

08

Use the definition of a generating function and binomial theorem to solve the sequence

(g)

For the sequence:

\(x/\left( {1 + x + {x^2}} \right)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}\frac{x}{{1 + x + {x^2}}} = \frac{x}{{1 + x + {x^2}}} \cdot \frac{{(1 - x)}}{{(1 - x)}}\\\frac{x}{{1 + x + {x^2}}} = \frac{{x - {x^2}}}{{1 - {x^3}}}\end{array}\)

\(\frac{x}{{1 + x + {x^2}}} = \sum\limits_{k = 0}^{ + \infty } {{x^{3k + 1}}} + \cdot \sum\limits_{k = 0}^{ + \infty } {( - 1)} {x^{3k + 2}}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_n} = 1\)When\(n\,\bmod \,3 = 1\).

\({a_n} = - 1\)When\(n\,\bmod \,3 = 2\).

\({a_n} = 0\) When\(n\,\bmod \,3 = 0\).

09

Use the definition of a generating function and binomial theorem to solve the sequence

(h)

For the sequence:

\({e^{3{x^2}}} - 1\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}{e^{3{x^2}}} - 1 = \sum\limits_{k = 0}^{ + \infty } {\frac{{{{\left( {3{x^2}} \right)}^k}}}{{k!}}} - 1\\{e^{3{x^2}}} - 1 = \sum\limits_{k = 0}^{ + \infty } {\frac{{{3^k}}}{{k!}}} \cdot {x^{2k}} - 1\\{e^{3{x^2}}} - 1 = \sum\limits_{k = 1}^{ + \infty } {\frac{{{3^k}}}{{k!}}} \cdot {x^{2k}}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_n} = \frac{{{3^k}}}{{k!}}\)When\(n\)even and\(n > 0\).

\({a_n} = 0\) Otherwise.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free