Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({(3x - 4)^3}\)

b) \({\left( {{x^3} + 1} \right)^3}\)

c) \(1/(1 - 5x)\)

d) \({x^3}/(1 + 3x)\)

e) \({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

f) \(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

g) \({x^2}/{(1 - x)^2}\)

h) \(2{e^{2x}}\)

Short Answer

Expert verified

(a) The required result is\({a_0} = - 64,{a_1} = 144,{a_2} = - 108,{a_3} = 27,{a_n} = 0\)when\(n \ge 4\).

(b) The required result is\({a_0} = 1,{a_3} = 3,{a_6} = 3,{a_9} = 1,{a_n} = 0\)when\(n = 1,2,4,5,7,8\)and\(n \ge 10\).

(c) The required result is\({a_n} = {5^n},n = 0,1,2, \ldots \)

(d) The required result is\({a_0} = 0,{a_1} = 0,{a_2} = 0,{a_n} = {( - 3)^{n - 3}},n = 3,4,5, \ldots \)

(e) The required result is\({a_0} = 8,{a_1} = 3,{a_2} = 2,{a_n} = 1\)when\(n\)even and\(n > 2,{a_n} = 0\)otherwise.

(f) The required result is\({a_0} = - 1,{a_1} = - 1,{a_2} = - 1,{a_3} = - 1,{a_n} = 1\)when\(n\)is a multiple of 4 and\(n \ge 4,{a_n} = 0\)otherwise.

(g) The required result is\({a_0} = {a_1} = 0,{a_n} = n - 1\)when\(n \ge 2\).

(h) The required result is\({a_n} = \frac{{{2^{n + 1}}}}{{n!}},n = 0,1,2, \ldots \)

Step by step solution

01

Formula of generating function and binomial theorem

Generating function for the sequence\({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Binomial theorem:

\({(x + y)^n} = \sum\limits_{j = 0}^n {\left( {\begin{array}{*{20}{l}}n\\j\end{array}} \right)} {x^{n - j}}{y^j}\)

02

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({(3x - 4)^3}\)

Use binomial theorem:

\(\begin{array}{l}{(3x - 4)^3} = {(3x + ( - 4))^3}\\{(3x - 4)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){(3x)^{3 - 0}}{( - 4)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){(3x)^{3 - 1}}{( - 4)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){(3x)^{3 - 2}}{( - 4)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){(3x)^{3 - 3}}{( - 4)^3}\\{(3x - 4)^3} = 27{x^3} - 108{x^2} + 144x - 64\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = - 64\\{a_1} = 144\\{a_2} = - 108\end{array}\)

\(\begin{array}{l}{a_3} = 27\\{a_n} = 0{\rm{ when }}n \ge 4\end{array}\)

03

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({\left( {{x^3} + 1} \right)^3}\)

Use the binomial theorem:

\(\begin{array}{l}{\left( {{x^3} + 1} \right)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){\left( {{x^3}} \right)^{3 - 0}}{(1)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){\left( {{x^3}} \right)^{3 - 1}}{(1)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){\left( {{x^3}} \right)^{3 - 2}}{(1)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){\left( {{x^3}} \right)^{3 - 3}}{(1)^3}\\{\left( {{x^3} + 1} \right)^3} = {x^9} + 3{x^6} + 3{x^3} + 1\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 1\)

\({a_3} = 3\)

\({a_6} = 3\)

\({a_9} = 1\)

\({a_n} = 0\) when \(n = 1,2,4,5,7,8\) and \(n \ge 10\)

04

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(1/(1 - 5x)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{{(5x)}^k}} \\\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{5^k}} {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = {5^n}\\n = 0,1,2, \ldots \end{array}\)

05

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^3}/(1 + 3x)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = {x^3} \cdot \frac{1}{{1 - ( - 3x)}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = \sum\limits_{m = 3}^{ + \infty } {{{( - 3)}^{m - 3}}{x^m}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = 0\\{a_1} = 0\\{a_2} = 0\end{array}\)

\(\begin{array}{l}{a_n} = {( - 3)^{n - 3}}\,\\n = 3,4,5, \ldots \end{array}\)

06

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = {x^2} + 3x + 7 + \sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^2}} \right)}^k}} \)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = 8 + 3x + 2{x^2} + \sum\limits_{k = 2}^{ + \infty } {{x^{2k}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 8\)

\({a_1} = 3\)

\({a_2} = 2\)

\({a_n} = 1\)when\(n\)even and\(n > 2\).

\({a_n} = 0\) otherwise.

07

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = {x^4} \cdot \frac{1}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = - 1 - x - {x^2} - {x^3} + \sum\limits_{m = 1}^{ + \infty } {{x^{4m}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = - 1\)

\({a_1} = - 1\)

\({a_2} = - 1\)

\({a_3} = - 1\)

\({a_n} = 1\)when\(n\)is a multiple of 4 and\(n \ge 4\).

\({a_n} = 0\) otherwise.

08

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2}/{(1 - x)^2}\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = {x^2} \cdot \frac{1}{{{{(1 - x)}^2}}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = \sum\limits_{m = 2}^{ + \infty } {(m - 1)} {x^m}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = {a_1} = 0\)

\({a_n} = n - 1\) when\(n \ge 2\).

09

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(2{e^{2x}}\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{{(2x)}^k}}}{{k!}}} \\2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{2^k}}}{{k!}}} \cdot {x^k}\\2{e^{2x}} = \sum\limits_{k = 0}^{ + \infty } {\frac{{{2^{k + 1}}}}{{k!}}} \cdot {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = \frac{{{2^{n + 1}}}}{{n!}}\\n = 0,1,2, \ldots \end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free