Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({(3x - 4)^3}\)

b) \({\left( {{x^3} + 1} \right)^3}\)

c) \(1/(1 - 5x)\)

d) \({x^3}/(1 + 3x)\)

e) \({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

f) \(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

g) \({x^2}/{(1 - x)^2}\)

h) \(2{e^{2x}}\)

Short Answer

Expert verified

(a) The required result is\({a_0} = - 64,{a_1} = 144,{a_2} = - 108,{a_3} = 27,{a_n} = 0\)when\(n \ge 4\).

(b) The required result is\({a_0} = 1,{a_3} = 3,{a_6} = 3,{a_9} = 1,{a_n} = 0\)when\(n = 1,2,4,5,7,8\)and\(n \ge 10\).

(c) The required result is\({a_n} = {5^n},n = 0,1,2, \ldots \)

(d) The required result is\({a_0} = 0,{a_1} = 0,{a_2} = 0,{a_n} = {( - 3)^{n - 3}},n = 3,4,5, \ldots \)

(e) The required result is\({a_0} = 8,{a_1} = 3,{a_2} = 2,{a_n} = 1\)when\(n\)even and\(n > 2,{a_n} = 0\)otherwise.

(f) The required result is\({a_0} = - 1,{a_1} = - 1,{a_2} = - 1,{a_3} = - 1,{a_n} = 1\)when\(n\)is a multiple of 4 and\(n \ge 4,{a_n} = 0\)otherwise.

(g) The required result is\({a_0} = {a_1} = 0,{a_n} = n - 1\)when\(n \ge 2\).

(h) The required result is\({a_n} = \frac{{{2^{n + 1}}}}{{n!}},n = 0,1,2, \ldots \)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Formula of generating function and binomial theorem

Generating function for the sequence\({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Binomial theorem:

\({(x + y)^n} = \sum\limits_{j = 0}^n {\left( {\begin{array}{*{20}{l}}n\\j\end{array}} \right)} {x^{n - j}}{y^j}\)

02

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({(3x - 4)^3}\)

Use binomial theorem:

\(\begin{array}{l}{(3x - 4)^3} = {(3x + ( - 4))^3}\\{(3x - 4)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){(3x)^{3 - 0}}{( - 4)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){(3x)^{3 - 1}}{( - 4)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){(3x)^{3 - 2}}{( - 4)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){(3x)^{3 - 3}}{( - 4)^3}\\{(3x - 4)^3} = 27{x^3} - 108{x^2} + 144x - 64\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = - 64\\{a_1} = 144\\{a_2} = - 108\end{array}\)

\(\begin{array}{l}{a_3} = 27\\{a_n} = 0{\rm{ when }}n \ge 4\end{array}\)

03

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({\left( {{x^3} + 1} \right)^3}\)

Use the binomial theorem:

\(\begin{array}{l}{\left( {{x^3} + 1} \right)^3} = \left( {\begin{array}{*{20}{l}}3\\0\end{array}} \right){\left( {{x^3}} \right)^{3 - 0}}{(1)^0} + \left( {\begin{array}{*{20}{l}}3\\1\end{array}} \right){\left( {{x^3}} \right)^{3 - 1}}{(1)^1} + \left( {\begin{array}{*{20}{l}}3\\2\end{array}} \right){\left( {{x^3}} \right)^{3 - 2}}{(1)^2} + \left( {\begin{array}{*{20}{l}}3\\3\end{array}} \right){\left( {{x^3}} \right)^{3 - 3}}{(1)^3}\\{\left( {{x^3} + 1} \right)^3} = {x^9} + 3{x^6} + 3{x^3} + 1\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 1\)

\({a_3} = 3\)

\({a_6} = 3\)

\({a_9} = 1\)

\({a_n} = 0\) when \(n = 1,2,4,5,7,8\) and \(n \ge 10\)

04

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(1/(1 - 5x)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{{(5x)}^k}} \\\frac{1}{{1 - 5x}} = \sum\limits_{k = 0}^{ + \infty } {{5^k}} {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = {5^n}\\n = 0,1,2, \ldots \end{array}\)

05

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^3}/(1 + 3x)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = {x^3} \cdot \frac{1}{{1 - ( - 3x)}}\)

\(\frac{{{x^3}}}{{1 + 3x}} = \sum\limits_{m = 3}^{ + \infty } {{{( - 3)}^{m - 3}}{x^m}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_0} = 0\\{a_1} = 0\\{a_2} = 0\end{array}\)

\(\begin{array}{l}{a_n} = {( - 3)^{n - 3}}\,\\n = 3,4,5, \ldots \end{array}\)

06

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = {x^2} + 3x + 7 + \sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^2}} \right)}^k}} \)

\({x^2} + 3x + 7 + \frac{1}{{1 - {x^2}}} = 8 + 3x + 2{x^2} + \sum\limits_{k = 2}^{ + \infty } {{x^{2k}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = 8\)

\({a_1} = 3\)

\({a_2} = 2\)

\({a_n} = 1\)when\(n\)even and\(n > 2\).

\({a_n} = 0\) otherwise.

07

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = {x^4} \cdot \frac{1}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1\)

\(\frac{{{x^4}}}{{1 - {x^4}}} - {x^3} - {x^2} - x - 1 = - 1 - x - {x^2} - {x^3} + \sum\limits_{m = 1}^{ + \infty } {{x^{4m}}} \)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = - 1\)

\({a_1} = - 1\)

\({a_2} = - 1\)

\({a_3} = - 1\)

\({a_n} = 1\)when\(n\)is a multiple of 4 and\(n \ge 4\).

\({a_n} = 0\) otherwise.

08

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\({x^2}/{(1 - x)^2}\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = {x^2} \cdot \frac{1}{{{{(1 - x)}^2}}}\)

\(\frac{{{x^2}}}{{{{(1 - x)}^2}}} = \sum\limits_{m = 2}^{ + \infty } {(m - 1)} {x^m}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\({a_0} = {a_1} = 0\)

\({a_n} = n - 1\) when\(n \ge 2\).

09

Use the definition of a generating function and binomial theorem to solve the sequence

For the sequence:

\(2{e^{2x}}\)

Use the fact:\(\sum\limits_{k = 0}^{ + \infty } {{x^k}} = \frac{1}{{1 - x}}\)

\(\begin{array}{l}2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{{(2x)}^k}}}{{k!}}} \\2{e^{2x}} = 2\sum\limits_{k = 0}^{ + \infty } {\frac{{{2^k}}}{{k!}}} \cdot {x^k}\\2{e^{2x}} = \sum\limits_{k = 0}^{ + \infty } {\frac{{{2^{k + 1}}}}{{k!}}} \cdot {x^k}\end{array}\)

The generating function is of the form:

\(\begin{array}{l}G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\end{array}\)

\(\begin{array}{l}{a_n} = \frac{{{2^{n + 1}}}}{{n!}}\\n = 0,1,2, \ldots \end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that the votes of npeople for different candidates (where there can be more than two candidates) for a particular office are the elements of a sequence. A person wins the election if this person receives a majority of the votes.

a) Devise a divide-and-conquer algorithm that determines whether a candidate received a majority and, if so, determine who this candidate is. [Hint: Assume that nis even and split the sequence of votes into two sequences, each with n/2elements. Note that a candidate could not have received a majority of votes without receiving a majority of votes in at least one of the two halves.]

b) Use the master theorem to give a big-Oestimate for the number of comparisons needed by the algorithm you devised in part (a).

Find the sequence with each of these functions as its exponential generating function f(x)=ex-11+x.

Apply the algorithm described in Example12 for finding the closest pair of points, using the Euclidean distance between points, to find the closest pair of the points

(1,2),(1,6),(2,4),(2,8),(3,1),(3,6),(3,10),(4,3),(5,1),(5,5),(5,9),(6,7),(7,1),(7,4),(7,9)and (8,6).

Find\(f(n)\) when \(n = {2^k}\), where\(f\)satisfies the recurrence relation \(f(n) = 8f(n/2) + {n^2}\) with\(f(1) = 1\).

Find a recurrence relation that describes the number of comparisons used by the following algorithm: Find the largest and second largest elements of a sequence of n numbers recursively by splitting the sequence into two subsequences with an equal number of terms, or where there is one more term in one subsequence than in the other, at each stage. Stop when subsequences with two terms are reached.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free