Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a closed form for the generating function for the sequence\(\left\{ {{a_n}} \right\}\), where

a) \({a_n} = - 1\) for all\(n = 0,1,2, \ldots \).

b) \({a_n} = {2^n}\)for\(n = 1,2,3,4, \ldots \)and\({a_0} = 0\).

c) \({a_n} = n - 1\)for\(n = 0,1,2, \ldots \).

d) \({a_n} = 1/(n + 1)!\)for\(n = 0,1,2, \ldots \)

e) \({a_n} = \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

f) \({a_n} = \left( {\begin{array}{*{20}{c}}{10}\\{n + 1}\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

Short Answer

Expert verified

(a) The required result is\(\frac{1}{{x - 1}}\).

(b) The required result is\(\frac{{2x}}{{1 - 2x}}\).

(c) The required result is\(\frac{{2x - 1}}{{{{(1 - x)}^2}}}\).

(d) The required result is\(\frac{{{e^x} - 1}}{x}\).

(e) The required result is\(\frac{{{x^2}}}{{{{(1 - x)}^3}}}\).

(f) The required result is\(\frac{1}{x}\left( {{{(1 + x)}^{10}} - 1} \right)\).

Step by step solution

01

Formula of generating function

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

02

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = - 1\)for all\(n = 0,1,2, \ldots \).

Use the formula for generating function:

\(\begin{array}{c}G(x) = - 1 - x - {x^2} - \ldots \\G(x) = - \left( {1 + x + {x^2} + \ldots } \right)\\G(x) = - \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = - \frac{1}{{1 - x}}\\G(x) = \frac{1}{{x - 1}}\end{array}\)

03

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = {2^n}\)for \(n = 1,2,3,4, \ldots \) and\({a_0} = 0\).

Use the formula for generating function:

\(\begin{array}{c}G(x) = 0 + {2^1}x + {2^2}{x^2} + {2^3}{x^3} + {2^4}{x^4} + {2^5}{x^5} + {2^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 1}^{ + \infty } {{2^k}} {x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {{{(2x)}^k}} - 1\\G(x) = \frac{1}{{1 - 2x}} - 1\\G(x) = \frac{1}{{1 - 2x}} - \frac{{1 - 2x}}{{1 - 2x}}\\G(x) = \frac{{2x}}{{1 - 2x}}\end{array}\)

04

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = n - 1\)for\(n = 0,1,2, \ldots \).

Use the formula for generating function:

\(\begin{array}{c}G(x) = \sum\limits_{k = 0}^{ + \infty } {(k - 1)} {x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {((} k + 1) - 2){x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {(k + 1)} {x^k} - 2\sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = \frac{1}{{{{(1 - x)}^2}}} - 2\sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = \frac{1}{{{{(1 - x)}^2}}} - 2 \cdot \frac{1}{{1 - x}}\\G(x) = \frac{1}{{{{(1 - x)}^2}}} - \frac{{2(1 - x)}}{{{{(1 - x)}^2}}}\\G(x) = \frac{{2x - 1}}{{{{(1 - x)}^2}}}\end{array}\)

05

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = 1/(n + 1)!\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{c}G(x) = \sum\limits_{k = 0}^{ + \infty } {\frac{1}{{(k + 1)!}}} {x^k}\\G(x) = \frac{1}{x}\sum\limits_{k = 0}^{ + \infty } {\frac{{{x^{k + 1}}}}{{(k + 1)!}}} \\G(x) = \frac{1}{x}\sum\limits_{m = 1}^{ + \infty } {\frac{{{x^m}}}{{m!}}} \\G(x) = \frac{1}{x}\left( {\sum\limits_{m = 0}^{ + \infty } {\frac{{{x^m}}}{{m!}}} - 1} \right)\\G(x) = \frac{1}{x}\left( {{e^x} - 1} \right)\\G(x) = \frac{{{e^x} - 1}}{x}\end{array}\)

06

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right)\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = \left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right) + \left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right)x + \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right){x^2} + \ldots + \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right){x^n} + \ldots \\G(x) = \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right){x^2} + \ldots + \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right){x^n} + \ldots \end{array}\)

\(G(x) = {x^2}\sum\limits_{m = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{m + 2}\\2\end{array}} \right)} {x^m}\)

\(G(x) = {x^2}\sum\limits_{m = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{3 + m - 1}\\{3 - 1}\end{array}} \right)} {x^m}\)

\(G(x) = {x^2} \cdot \frac{1}{{{{(1 - x)}^3}}}\)

\(G(x) = \frac{{{x^2}}}{{{{(1 - x)}^3}}}\)

07

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = \left( {\begin{array}{*{20}{c}}{10}\\{n + 1}\end{array}} \right)\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^k}\\G(x) = \sum\limits_{k = 0}^9 {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^k}\\G(x) = \frac{1}{x}\sum\limits_{k = 0}^9 {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^{k + 1}}\end{array}\)

\(\begin{array}{l}G(x) = \frac{1}{x}\sum\limits_{m = 1}^{10} {\left( {\begin{array}{*{20}{c}}{10}\\m\end{array}} \right)} {x^m}\\G(x) = \frac{1}{x}\left( {\sum\limits_{m = 0}^{10} {\left( {\begin{array}{*{20}{l}}{10}\\m\end{array}} \right)} {x^m} - 1} \right)\\G(x) = \frac{1}{x}\left( {{{(1 + x)}^{10}} - 1} \right)\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a closed form for the generating function for each of these sequences. (For each sequence, use the most obvious choice of a sequence that follows the pattern of the initial terms listed.)

a) \(0,2,2,2,2,2,2,0,0,0,0,0, \ldots \)

b) \(0,0,0,1,1,1,1,1,1, \ldots \)

c) \(0,1,0,0,1,0,0,1,0,0,1, \ldots \)

d) \(2,4,8,16,32,64,128,256, \ldots \)

e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0,0, \ldots \)

f) \(2, - 2,2, - 2,2, - 2,2, - 2, \ldots \)

g) \(1,1,0,1,1,1,1,1,1,1, \ldots \)

h) \(0,0,0,1,2,3,4, \ldots \)

Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to compute \({a^n}\,\bmod \,\;m,\) where\(a,\;n\), and \(n\) are positive integers, using the recursive algorithms from Example 4 in Section 5.4.

b) Use the recurrence relation you found in part (a) to construct a big-\(O\)estimate for the number of modular multiplications used to compute\({a^n}\,\bmod \,\;m\)using the recursive algorithm.

Use generating functions (and a computer algebra package, if available) to find the number of ways to make change for 1 using pennies, nickels, dimes, and quarters with

a) no more than 10 pennies.

b) no more than 10 pennies and no more than 10 nickels.

c) no more than 10 coins

Use pseudocode to describe the recursive algorithm for solving the closest-pair problem as described in Example 12.

Find f(n)when n=2k, where fsatisfies the recurrence relation f(n)=f(n/2)+1with f(1)=1.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free