Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a closed form for the generating function for the sequence\(\left\{ {{a_n}} \right\}\), where

a) \({a_n} = - 1\) for all\(n = 0,1,2, \ldots \).

b) \({a_n} = {2^n}\)for\(n = 1,2,3,4, \ldots \)and\({a_0} = 0\).

c) \({a_n} = n - 1\)for\(n = 0,1,2, \ldots \).

d) \({a_n} = 1/(n + 1)!\)for\(n = 0,1,2, \ldots \)

e) \({a_n} = \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

f) \({a_n} = \left( {\begin{array}{*{20}{c}}{10}\\{n + 1}\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

Short Answer

Expert verified

(a) The required result is\(\frac{1}{{x - 1}}\).

(b) The required result is\(\frac{{2x}}{{1 - 2x}}\).

(c) The required result is\(\frac{{2x - 1}}{{{{(1 - x)}^2}}}\).

(d) The required result is\(\frac{{{e^x} - 1}}{x}\).

(e) The required result is\(\frac{{{x^2}}}{{{{(1 - x)}^3}}}\).

(f) The required result is\(\frac{1}{x}\left( {{{(1 + x)}^{10}} - 1} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Formula of generating function

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

02

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = - 1\)for all\(n = 0,1,2, \ldots \).

Use the formula for generating function:

\(\begin{array}{c}G(x) = - 1 - x - {x^2} - \ldots \\G(x) = - \left( {1 + x + {x^2} + \ldots } \right)\\G(x) = - \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = - \frac{1}{{1 - x}}\\G(x) = \frac{1}{{x - 1}}\end{array}\)

03

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = {2^n}\)for \(n = 1,2,3,4, \ldots \) and\({a_0} = 0\).

Use the formula for generating function:

\(\begin{array}{c}G(x) = 0 + {2^1}x + {2^2}{x^2} + {2^3}{x^3} + {2^4}{x^4} + {2^5}{x^5} + {2^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 1}^{ + \infty } {{2^k}} {x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {{{(2x)}^k}} - 1\\G(x) = \frac{1}{{1 - 2x}} - 1\\G(x) = \frac{1}{{1 - 2x}} - \frac{{1 - 2x}}{{1 - 2x}}\\G(x) = \frac{{2x}}{{1 - 2x}}\end{array}\)

04

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = n - 1\)for\(n = 0,1,2, \ldots \).

Use the formula for generating function:

\(\begin{array}{c}G(x) = \sum\limits_{k = 0}^{ + \infty } {(k - 1)} {x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {((} k + 1) - 2){x^k}\\G(x) = \sum\limits_{k = 0}^{ + \infty } {(k + 1)} {x^k} - 2\sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = \frac{1}{{{{(1 - x)}^2}}} - 2\sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = \frac{1}{{{{(1 - x)}^2}}} - 2 \cdot \frac{1}{{1 - x}}\\G(x) = \frac{1}{{{{(1 - x)}^2}}} - \frac{{2(1 - x)}}{{{{(1 - x)}^2}}}\\G(x) = \frac{{2x - 1}}{{{{(1 - x)}^2}}}\end{array}\)

05

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = 1/(n + 1)!\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{c}G(x) = \sum\limits_{k = 0}^{ + \infty } {\frac{1}{{(k + 1)!}}} {x^k}\\G(x) = \frac{1}{x}\sum\limits_{k = 0}^{ + \infty } {\frac{{{x^{k + 1}}}}{{(k + 1)!}}} \\G(x) = \frac{1}{x}\sum\limits_{m = 1}^{ + \infty } {\frac{{{x^m}}}{{m!}}} \\G(x) = \frac{1}{x}\left( {\sum\limits_{m = 0}^{ + \infty } {\frac{{{x^m}}}{{m!}}} - 1} \right)\\G(x) = \frac{1}{x}\left( {{e^x} - 1} \right)\\G(x) = \frac{{{e^x} - 1}}{x}\end{array}\)

06

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right)\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = \left( {\begin{array}{*{20}{l}}0\\2\end{array}} \right) + \left( {\begin{array}{*{20}{l}}1\\2\end{array}} \right)x + \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right){x^2} + \ldots + \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right){x^n} + \ldots \\G(x) = \left( {\begin{array}{*{20}{l}}2\\2\end{array}} \right){x^2} + \ldots + \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right){x^n} + \ldots \end{array}\)

\(G(x) = {x^2}\sum\limits_{m = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{m + 2}\\2\end{array}} \right)} {x^m}\)

\(G(x) = {x^2}\sum\limits_{m = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{3 + m - 1}\\{3 - 1}\end{array}} \right)} {x^m}\)

\(G(x) = {x^2} \cdot \frac{1}{{{{(1 - x)}^3}}}\)

\(G(x) = \frac{{{x^2}}}{{{{(1 - x)}^3}}}\)

07

Use the definition of a generating function and solve the sequence

For the sequence:

\({a_n} = \left( {\begin{array}{*{20}{c}}{10}\\{n + 1}\end{array}} \right)\)for \(n = 0,1,2, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^k}\\G(x) = \sum\limits_{k = 0}^9 {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^k}\\G(x) = \frac{1}{x}\sum\limits_{k = 0}^9 {\left( {\begin{array}{*{20}{c}}{10}\\{k + 1}\end{array}} \right)} {x^{k + 1}}\end{array}\)

\(\begin{array}{l}G(x) = \frac{1}{x}\sum\limits_{m = 1}^{10} {\left( {\begin{array}{*{20}{c}}{10}\\m\end{array}} \right)} {x^m}\\G(x) = \frac{1}{x}\left( {\sum\limits_{m = 0}^{10} {\left( {\begin{array}{*{20}{l}}{10}\\m\end{array}} \right)} {x^m} - 1} \right)\\G(x) = \frac{1}{x}\left( {{{(1 + x)}^{10}} - 1} \right)\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a) What is the generating function forak, where akis the number of solutions of x1+x2+x3=kwhenx1,x2, and x3are integers withx1โ‰ฅ2,0โ‰คx2โ‰ค3, and 2โ‰คx3โ‰ค5?

b) Use your answer to part (a) to finda6.

Use Exercise 31 to show that if a<bd, thenf(n)isO(nlogba).

LetG(x)be the sequence of Catalan numbers, that is, the solution to the recurrence relationwith.

(a)Show that ifis the generating function for the sequence of Catalan numbers, thenxG(x)2-G(x)+1=0. Conclude (using the initial conditions) thatG(x)=(1-1-4x)/(2x).

(b) Use Exercise 40 to conclude that G(x)=โˆ‘n=0โˆž1n+1(2nn)xn,so thatCn=1n+1(2nn).

(c) Show thatCnโฉพ2n-1for all positive integersn.

Findf(n)whenn=2k, wherefsatisfies the recurrence relation

f(n)=8f(n/2)+n2 withf(1)=1.

Find the coefficient of \({x^{10}}\) in the power series of each of these functions.

a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)

b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)

c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)

d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)

e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free