Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a closed form for the generating function for each of these sequences. (Assume a general form for the terms of the sequence, using the most obvious choice of such a sequence.)

a) \( - 1, - 1, - 1, - 1, - 1, - 1, - 1,0,0,0,0,0,0, \ldots \)

b) \(1,3,9,27,81,243,729, \ldots \)

c) \(0,0,3, - 3,3, - 3,3, - 3, \ldots \)

d) \(1,2,1,1,1,1,1,1,1, \ldots \)

e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),{2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,{2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0, \ldots \)

f) \( - 3,3, - 3,3, - 3,3, \ldots \)

g) \(0,1, - 2,4, - 8,16, - 32,64, \ldots \)

h) \(1,0,1,0,1,0,1,0, \ldots \)

Short Answer

Expert verified

(a) The required result is\( - \frac{{1 - {x^7}}}{{1 - x}}\).

(b) The required result is\(\frac{1}{{1 - 3x}}\).

(c) The required result is\(\frac{{3{x^2}}}{{1 + x}}\).

(d) The required result is\(x + \frac{1}{{1 - x}}\).

(e) The required result is\({(1 + 2x)^7}\).

(f) The required result is\(\frac{{ - 3}}{{1 + x}}\).

(g) The required result is\(\frac{x}{{1 + 2x}}\).

(h) The required result is\(\frac{1}{{1 - {x^2}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Formula of generating function

Generating function for the sequence\({a_0},{a_1}, \ldots ,{a_k}\)of real numbers is the infinite series

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

02

Use the definition of a generating function and solve the sequence

For the sequence:

\( - 1, - 1, - 1, - 1, - 1, - 1, - 1,0,0,0,0,0,0, \ldots \)

Use the formula for generating function:

\[\begin{array}{l}G(x) = - 1 - x - {x^2} - \ldots - {x^6} + 0{x^7} + 0{x^8} + \ldots \\G(x) = - 1 - x - {x^2} - \ldots - {x^6}\\G(x) = - \sum\limits_{k = 0}^6 {{x^k}} \\G(x) = - \frac{{1 - {x^7}}}{{1 - x}}\end{array}\]

03

Use the definition of a generating function and solve the sequence

For the sequence:

\(1,3,9,27,81,243,729, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 3x + 9{x^2} + 27{x^3} + 81{x^4} + 243{x^5} + 729{x^6} + ..\\G(x) = {3^0} + {3^1}x + {3^2}{x^2} + {3^3}{x^3} + {3^4}{x^4} + {3^5}{x^5} + {3^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{{(3x)}^k}} \\G(x) = \frac{1}{{1 - 3x}}\end{array}\)

04

Use the definition of a generating function and solve the sequence

For the sequence:

\(0,0,3, - 3,3, - 3,3, - 3, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 0 + 0x + 3{x^2} - 3{x^3} + 3{x^4} - 3{x^5} + 3{x^6} + \ldots \\G(x) = 3{( - 1)^2}{x^2} + 3{( - 1)^3}{x^3} + 3{( - 1)^4}{x^4} + 3{( - 1)^5}{x^5} + 3{( - 1)^6}{x^6} + \ldots \\G(x) = \sum\limits_{k = 2}^{ + \infty } 3 {( - 1)^k}{x^k}\end{array}\)

\(\begin{array}{l}G(x) = 3{x^2} \cdot \frac{1}{{1 - ( - x)}}\\G(x) = \frac{{3{x^2}}}{{1 + x}}\end{array}\)

05

Use the definition of a generating function and solve the sequence

For the sequence:

\(1,2,1,1,1,1,1,1,1, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 2x + 1{x^2} + 1{x^3} + 1{x^4} + 1{x^5} + \ldots \\G(x) = 1 + 2x + {x^2} + {x^3} + {x^4} + {x^5} + \ldots \\G(x) = x + \left( {1 + x + {x^2} + {x^3} + {x^4} + {x^5} + \ldots } \right)\end{array}\)

\(\begin{array}{l}G(x) = x + \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\G(x) = x + \frac{1}{{1 - x}}\end{array}\)

06

Use the definition of a generating function and solve the sequence

For the sequence:

\(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),{2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,{2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0, \ldots \)

Use the formula for generating function:

\(G(x) = \left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right) + 2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right)x + {2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right){x^2} + {2^3}\left( {\begin{array}{*{20}{l}}7\\3\end{array}} \right){x^3} + {2^4}\left( {\begin{array}{*{20}{l}}7\\4\end{array}} \right){x^4} + {2^5}\left( {\begin{array}{*{20}{l}}7\\5\end{array}} \right){x^5} + {2^6}\left( {\begin{array}{*{20}{l}}7\\6\end{array}} \right){x^6} + {2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right){x^7} + 0{x^8} + 0{x^9} + \ldots .\)

\(G(x) = \left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right) + \left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right)2x + \left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right){(2x)^2} + \left( {\begin{array}{*{20}{l}}7\\3\end{array}} \right){(2x)^3} + \left( {\begin{array}{*{20}{l}}7\\4\end{array}} \right){(2x)^4} + \left( {\begin{array}{*{20}{l}}7\\5\end{array}} \right){(2x)^5} + \left( {\begin{array}{*{20}{l}}7\\6\end{array}} \right){(2x)^6} + \left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right){(2x)^7}\)

\(G(x) = \sum\limits_{k = 0}^7 {\left( {\begin{array}{*{20}{l}}7\\k\end{array}} \right)} {(2x)^k}\)

\(G(x) = {(1 + 2x)^7}\)

07

Use the definition of a generating function and solve the sequence

For the sequence:

\( - 3,3, - 3,3, - 3,3, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = - 3 + 3x - 3{x^2} + 3{x^3} - 3{x^4} + 3{x^5} + \ldots \\G(x) = 3{( - 1)^1} + 3{( - 1)^2}x + 3{( - 1)^3}{x^2} + 3{( - 1)^4}{x^3} + 3{( - 1)^5}{x^4} + 3{( - 1)^6}{x^5} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } 3 \cdot {( - 1)^{k + 1}}{x^k}\\G(x) = - 3\sum\limits_{k = 0}^{ + \infty } {{{( - x)}^k}} \end{array}\)

\(\begin{array}{l}G(x) = - 3 \cdot \frac{1}{{1 - ( - x)}}\\G(x) = \frac{{ - 3}}{{1 + x}}\end{array}\)

08

Use the definition of a generating function and solve the sequence

For the sequence:

\(0,1, - 2,4, - 8,16, - 32,64, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 0 + 1x - 2{x^2} + 4{x^3} - 8{x^4} + 16{x^5} + \ldots \\G(x) = {( - 2)^0}x + {( - 2)^1}{x^2} + {( - 2)^2}{x^3} + {( - 2)^3}{x^4} + {( - 2)^4}{x^5} + \ldots \\G(x) = \sum\limits_{k = 1}^{ + \infty } {{{( - 2)}^{k - 1}}} {x^k}\end{array}\)

\(\begin{array}{l}G(x) = x\sum\limits_{k = 0}^{ + \infty } {{{( - 2x)}^k}} \\G(x) = x \cdot \frac{1}{{1 - ( - 2x)}}\\G(x) = \frac{x}{{1 + 2x}}\end{array}\)

09

Use the definition of a generating function and solve the sequence

For the sequence:

\(1,0,1,0,1,0,1,0, \ldots \)

Use the formula for generating function:

\(\begin{array}{l}G(x) = 1 + 0x + 1{x^2} + 0{x^3} + 1{x^4} + 0{x^5} + \ldots \\G(x) = 1 + {x^2} + {x^4} + {x^6} + \ldots \\G(x) = \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \end{array}\)

\(\begin{array}{l}G(x) = \sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^2}} \right)}^k}} \\G(x) = \frac{1}{{1 - {x^2}}}\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free