Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use Exercise 48 to solve the recurrence relation\((n + 1){a_n} = (n + 3){a_{n - 1}} + n\) , for \(n \geqslant 1\), with \({a_0} = 1\)

Short Answer

Expert verified

Thus, the result isan=512n2+1312n+1

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Linear Homogeneous Recurrence Relations with Constant Coefficients definition

Suppose that\(\left\{ {{a_n}} \right\}\)satisfies the linear non-homogeneous recurrence relation

\({a_n} = {c_1}{a_{n - 1}} + {c_2}{a_{n - 2}} + \cdots + {c_k}{a_{n - k}} + F(n),\)Where\({c_1},{c_2}, \ldots ,{c_k}\)are real numbers, and

\(F(n) = \left( {{b_f}{n^t} + {b_{f - 1}}{n^{t - 1}} + \cdots + {b_1}n + {b_0}} \right){s^n},\)Where\({b_0},{b_1}, \ldots ,{b_t}\)and\(s\)are real numbers.

When\(s\)is not a root of the characteristic equation of the associated linear homogeneous recurrence relation, there is a particular solution of the form\(\left( {{p_t}{n^t} + {p_{t - 1}}{n^{t - 1}} + \cdots + {p_{1n}} + {p_0}} \right){s^n}\)

When\(s\)a root of this characteristic equation and its multiplicity is is\(m\), there is a particular solution of the form:\({n^m}\left( {{p_t}{n^t} + {p_{t - 1}}{n^{t - 1}} + \cdots + {p_1}n + {p_0}} \right){s^n}.\)

02

Use Recurrence Relations

The result from the previous exercise is\(f(n){a_n} = g(n){a_{n - 1}} + h(n)n \ge 1{a_0} = C\), then\({a_n} = \frac{{C + \sum\limits_{i = 1}^n Q (i) \cdot h(i)}}{{g(n + 1)Q(n + 1)}},\,\,Q(n) = \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}}\)

Solve:\((n + 1){a_n} = (n + 3){a_{n - 1}} + n{a_0} = 1\)

Since\(f(n){a_n} = g(n){a_{n - 1}} + h(n)\)and\({a_0} = C\)(in general):

\(f(n) = n + 1g(n) = n + 3h(n) = nC = 1\)

Let us first determine\(Q(n) = \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}}\)

\(\begin{array}{l}Q(n) = \frac{{f(1) \cdot f(2) \cdot \ldots \cdot f(n - 1)}}{{g(1) \cdot g(2) \cdot \ldots \cdot g(n)}}\\Q(n) = \frac{{2 \cdot 3 \cdot \ldots \cdot n}}{{4 \cdot 5 \cdot \ldots \cdot (n + 3)}}\\Q(n) = \frac{{2 \cdot 3}}{{(n + 1) \cdot (n + 2) \cdot (n + 3)}}\\Q(n) = \frac{6}{{(n + 1) \cdot (n + 2) \cdot (n + 3)}}\end{array}\)

Then we obtain:

\(\begin{array}{c}\sum\limits_{i = 1}^n Q (i)h(i) = \sum\limits_{i = 1}^n {\frac{{6i}}{{(i + 1) \cdot (i + 2) \cdot (i + 3)}}} \\ = \frac{{3n(n + 1)}}{{2(n + 2)(n + 3)}}\end{array}\)

03

Use the results from the previous exercise

Using the result of the previous exercise, we then obtain:

an=C+i=1nQ(i)·h(i)g(n+1)Q(n+1)an=1+3n(n+1)2(n+2)(n+3)6an=1+3n(n+1)2(n+2)(n+3)6(n+2)(n+3)an=(n+2)(n+3)+3n(n+1)26an=2(n+2)(n+3)+3n(n+1)12an=2n2+10n+12+3n2+3n12an=5n2+13n+1212an=512n2+1312n+1

Thus, the result isan=512n2+1312n+1

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free