Chapter 8: Q43E (page 551)
Use generating functions to prove Vandermonde's identity:
\(C(m + n,r) = \sum\limits_{k = 0}^r C (m,r - k)C(n,k)\), whenever \(m\) , \(n\) , and \(r\) are nonnegative integers with \(r\) not exceeding either \(m\) or \(n\).
Short Answer
The resultant answer is \(C(m + n,r) = \sum\limits_{k = 0}^r C (m,r - k)C(n,k)\).