Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to prove Vandermonde's identity:

\(C(m + n,r) = \sum\limits_{k = 0}^r C (m,r - k)C(n,k)\), whenever \(m\) , \(n\) , and \(r\) are nonnegative integers with \(r\) not exceeding either \(m\) or \(n\).

Short Answer

Expert verified

The resultant answer is \(C(m + n,r) = \sum\limits_{k = 0}^r C (m,r - k)C(n,k)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is \(m,n,r\) are nonnegative and \(r\) does not exceed \(m\) or \(n\).

02

Concept of Extended binomial theorem

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}, \ldots \) of real numbers is the infinite series: \(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Extended binomial theorem: \({(1 + x)^u} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\).

03

Use the binomial theorem and simplify the expression

Use the binomial theorem:

\(\begin{array}{l}{(1 + x)^m}{(1 + x)^n} = \left( {\sum\limits_{r = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}m\\r\end{array}} \right)} {x^r}} \right)\left( {\sum\limits_{r = 0}^{ + \infty } {\left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right)} {x^r}} \right)\\{(1 + x)^m}{(1 + x)^n} = \left( {\sum\limits_{r = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right)} {x^r}} \right)\left( {\sum\limits_{r = 0}^{ + \infty } {\left( {\begin{array}{*{20}{l}}m\\r\end{array}} \right)} {x^r}} \right)\\{(1 + x)^m}{(1 + x)^n} = \sum\limits_{r = 0}^{ + \infty } {\left( {\sum\limits_{k = 0}^r {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{r - k}\end{array}} \right)} \right)} {x^k}\end{array}\)

Further, solve the above expression,

\(\begin{array}{l}{(1 + x)^m}{(1 + x)^n} = \sum\limits_{r = 0}^{ + \infty } {\left( {\sum\limits_{k = 0}^r C (n,k)C(m,r - k)} \right)} {x^k}\\{(1 + x)^m}{(1 + x)^n} = \sum\limits_{r = 0}^{ + \infty } {\left( {\sum\limits_{k = 0}^r C (m,r - k)C(n,k)} \right)} {x^k}\end{array}\)

Since \({(1 + x)^{m + n}} = {(1 + x)^m}{(1 + x)^n}\), gives

\(\sum\limits_{r = 0}^{ + \infty } C (m + n,r){x^r} = \sum\limits_{k = 0}^{ + \infty } {\left( {\sum\limits_{k = 0}^r C (m,r - k)C(n,k)} \right)} {x^k}\)

The corresponding coefficients then have to be equal: \(C(m + n,r) = \sum\limits_{k = 0}^r C (m,r - k)C(n,k)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free