Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to prove Pascal's identity:

\(C(n,r) = C(n - 1,r) + C(n - 1,r - 1)\) when \(n\) and \(r\) are positive integers with \(r < n\).

Short Answer

Expert verified

The resultant answer is \(C(n,r) = C(n - 1,r) + C(n - 1,r - 1)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is \(r\)and \(n\)are positive.

02

Concept of Extended binomial theorem

Generating function for the sequence \({a_0},{a_1}, \ldots ,{a_k}, \ldots \) of real numbers is the infinite series: \(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Extended binomial theorem: \({(1 + x)^u} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\).

03

Use the binomial theorem and simplify the expression

Use the binomial theorem:

\(\begin{array}{l}{(1 + x)^{n - 1}} + x{(1 + x)^{n - 1}} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right)} {x^k} + x\sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right)} {x^k}\\{(1 + x)^{n - 1}} + x{(1 + x)^{n - 1}} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right)} {x^k} + \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right)} {x^{k + 1}}\\{(1 + x)^{n - 1}} + x{(1 + x)^{n - 1}}\; = 1 + \sum\limits_{k = 1}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right)} {x^k} + \sum\limits_{k = 1}^{ + \infty } {\left( {\begin{array}{*{20}{l}}{n - 1}\\{k - 1}\end{array}} \right)} {x^k}\\{(1 + x)^{n - 1}} + x{(1 + x)^{n - 1}} = 1 + \sum\limits_{k = 1}^{ + \infty } {\left( {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{n - 1}\\{k - 1}\end{array}} \right)} \right)} {x^k}\end{array}\)

Since \({(1 + x)^n} = {(1 + x)^{n - 1}} + x{(1 + x)^{n - 1}}\)

\(\sum\limits_{k = 0}^{ + \infty } C (n,k){x^k} = 1 + \sum\limits_{k = 1}^{ + \infty } {\left( {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{l}}{n - 1}\\{k - 1}\end{array}} \right)} \right)} {x^k}\)

\(1 + \sum\limits_{k = 1}^{ + \infty } C (n,k){x^k} = 1 + \sum\limits_{k = 1}^{ + \infty } {\left( {\left( {\begin{array}{*{20}{c}}{n - 1}\\k\end{array}} \right) + \left( {\begin{array}{*{20}{l}}{n - 1}\\{k - 1}\end{array}} \right)} \right)} {x^k}\)

The corresponding coefficients then have to be equal (assuming \(k \ge 1\) ):

\(C(n,k) = C(n - 1,k) + C(n - 1,k - 1)\)

04

Let \(k = r\)and simplify the expression

Let \(k = r\) (assuming \(k = r \ge 1\) ):\(C(n,r) = C(n - 1,r) + C(n - 1,r - 1)\).

Hence, the resultant answer is \(C(n,r) = C(n - 1,r) + C(n - 1,r - 1)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free