Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

LetG(x)be the sequence of Catalan numbers, that is, the solution to the recurrence relationwith.

(a)Show that ifis the generating function for the sequence of Catalan numbers, thenxG(x)2-G(x)+1=0. Conclude (using the initial conditions) thatG(x)=(1-1-4x)/(2x).

(b) Use Exercise 40 to conclude that G(x)=n=01n+1(2nn)xn,so thatCn=1n+1(2nn).

(c) Show thatCn2n-1for all positive integersn.

Short Answer

Expert verified

(a)The resultant answer isG(x)=-(-1)±(-1)2-4(x)(1)2x=1±1-4x2x.

(b)The resultant answer is localid="1668677496153" Cn=1n+12nn

(c) The resultant answer is Cn2n-1.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is:

Cn=k=0n-1CkCn-k-1

C0=C1=1

02

Concept of Extended binomial theorem

Generating function for the sequence a0,a1,,ak,of real numbers is the infiniteseries:

G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

x(1+x)u=k=0+(uk)xk

03

Simplify the expression

(a)

Let Gx=n+cXxn

xG(x)2-G(x)+1=xn=0+k=0nCkCn-kxn-n=0+Cnxn+1

xG(x)2-G(x)+1=n=0+k=0nCkCn-kxn+1-n=1+Cnxn+1-C0

Similarly;

xG(x)2-G(x)+1=n=0+k=0nCkCn-kxn+1-n=1+Cnxn+1-1

xG(x)2-G(x)+1=n=1+k=0n-1CkCn-k-1xn-n=1+k=0n-1CkCn-k-1xnCn=k=0n-1CkCn-k-1

xG(x)2-G(x)+1=0

Similarly;

We have then obtained xG(x)2-G(x)+1=0

Determine the roots using the quadratic formula:

G(x)=-(-1)±(-1)2-4(x)(1)2x=1±1-4x2x

If you choose the positive sign, then the first term of the series will be 1xdetermined using technology) and thus the terms does not exist whenx=0.

We then need to choose the negative sign

04

Simplify by using the concept of Binomial theorem

(b)

Use the extended binomial theorem:

(1-4x)-1/2=(1+(-4x))-1/2

localid="1668673798980" (1-4x)-1/2=k=0+-1/2k(-4x)k

localid="1668673834816" (1-4x)-1/2=k=0+2kk(-4)k(-4)kxk

localid="1668673866139" (1-4x)-1/2=k=0+2kkxk

Note that (1-4x)-1/2is the derivative of G(x)=1±1-4x2thusxG(x)is the integral of

(1-4x)-1/2

xG(x)=0x(1-4x)-1/2dx

localid="1668673903804" xG(x)=0xk=0+2kkxkdx

localid="1668673963573" xG(x)=k=0+2kk0xxkdx

Similarly;

localid="1668673979970" xG(x)=k=0+2kkxk+1k+1

localid="1668673999736" xG(x)=k=0+1k+12kkxk+1

localid="1668674014569" xG(x)=xk=0+1k+12kkxk

We then note that the coefficient of localid="1668676315488" xnisCn=1n+12nn

05

Use the strong induction concept and simplify the expression

(c)

Let us assume that P(1),P(2),,P(n)is true and n1

Ck2k-1when1kn

We need to prove that P(n+1)is true;

Cn+1=k=0nCkCn-k-1

Cn+1k=0n2k2n-k-1SinceP(1),P(2),,P(n)is true

Cn+1=k=0n2n-1

Cn+1=(n+1)2n-1

Cn+12·2n-1

Cn+1=2n

ThusP(n+1)is true.

Conclusion By the principle of strong induction,P(n)is true for all positive integersn

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free