Chapter 8: Q39E (page 551)
Use generating functions to find an explicit formula for the Fibonacci numbers.
Short Answer
The resultant answer is
Chapter 8: Q39E (page 551)
Use generating functions to find an explicit formula for the Fibonacci numbers.
The resultant answer is
All the tools & learning materials you need for study success - in one app.
Get started for freeUse generating functions to solve the recurrence relation with initial conditions and.
A sequence \({a_1},{a_2},.....,{a_n}\) is unimodal if and only if there is an index \(m,1 \le m \le n,\) such that \({a_i} < {a_i} + 1\) when \(1{1 < i < m}\) and \({a_i} > {a_{i + 1}}\) when \(m \le i < n\). That is, the terms of the sequence strictly increase until the \(m\)th term and they strictly decrease after it, which implies that \({a_m}\) is the largest term. In this exercise, \({a_m}\) will always denote the largest term of the unimodal sequence \({a_1},{a_2},.....,{a_n}\).
a) Show that \({a_m}\) is the unique term of the sequence that is greater than both the term immediately preceding it and the term immediately following it.
b) Show that if \({a_i} < {a_i} + 1\) where \(1 \le i < n\), then \(i + 1 \le m \le n\).
c) Show that if \({a_i} > {a_{i + 1}}\) where \(1 \le i < n\), then \(1 \le m \le i\).
d) Develop a divide-and-conquer algorithm for locating the index \(m\). (Hint: Suppose that \(i < m < j\). Use parts (a), (b), and (c) to determine whether \(((i + j)/2) + 1 \le m \le n,\) \(1 \le m \le ((i + j)/2) - 1,\) or \(m = ((i + j)/2)\)
What is the generating function for , where is the number of solutions of when , and are integers with , , and
Use your answer to part (a) to find .
Find the generating function for the finite sequence .
Find a closed form for the generating function for each of these sequences. (Assume a general form for the terms of the sequence, using the most obvious choice of such a sequence.)
a) \( - 1, - 1, - 1, - 1, - 1, - 1, - 1,0,0,0,0,0,0, \ldots \)
b) \(1,3,9,27,81,243,729, \ldots \)
c) \(0,0,3, - 3,3, - 3,3, - 3, \ldots \)
d) \(1,2,1,1,1,1,1,1,1, \ldots \)
e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),2\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),{2^2}\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,{2^7}\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0, \ldots \)
f) \( - 3,3, - 3,3, - 3,3, \ldots \)
g) \(0,1, - 2,4, - 8,16, - 32,64, \ldots \)
h) \(1,0,1,0,1,0,1,0, \ldots \)
What do you think about this solution?
We value your feedback to improve our textbook solutions.