Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to find an explicit formula for the Fibonacci numbers.

Short Answer

Expert verified

The resultant answer isak=-25-52x1-5k+25+52x1+5k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1: Given data

The given data is generating functions.

02

Step 2: Concept of Extended binomial theorem

Generating function for the sequence a0,a1,,ak,of real numbers is the infinite series:

G(x)=a0+a1x+a2x2++akxk+

=k=0+akxk

Extended binomial theorem:

(1+x)u=k=0+(uk)xk

03

Step 3:Simplify the expression

Definition Fibonacci numbers: fk=ak

ak=ak-1+ak-2a0

ak=0a1

LetG(x)=k=0+akxk

G(x)-a0-a1x=k=2+akxk=k=1+ak-1+ak-2xk

G(x)-a0-a1x=xk=2+ak-1xk-1+x2k=2+ak-2xk-2

G(x)-a0-a1x=xm=1+amxm+x2n=0+anxn

G(x)-a0-a1x=xG(x)-a0+x2G(x)

04

Step 4:Simplify the obtained expression

The equation obtained is G(x)-a0-a1x=xG(x)-a0+x2G(x)

G(x)-a0-a1x=xG(x)-a0+x2G(x)G(x)-0-x

G(x)-a0-a1x=x(G(x)-0)+x2G(x)G(x)-x

G(x)-a0-a1x=xG(x)+x2G(x)

G(x)-xG(x)-x2G(x)-x=0

G(x)-xG(x)-x2G(x)=x

1-x-x2G(x)=x

G(x)=x1-x-x2

Similarly,

G(x)=xx-12(1-5)x-12(1+5)

G(x)=4x(2x-1+5)(2x-1-5)

05

Step 5:Determine the partial functions

We will determine the partial fractions;

4x(2x-1+5)(2x-1-5)=A(2x-1+5)+B(2x-1-5)

4x(2x-1+5)(2x-1-5)=2Ax-A-5A+2BX-B+5B(2x-1+5)(2x-1-5)

4x(2x-1+5)(2x-1-5)=(2A+2B)x+(-5A-A+5B-B)(2x-1+5)(2x-1-5)

We will determine the values of the constants:

2A+2B=0

-5A-A+5B-B=4

Solve the first equation and fill this solution in into the second equation,

A=-B

5B+B+5B-B=4

Solve the second equation,

A=-B=-25

B=425=25

Thus,

G(x)=25-1(2x-1+5)+1(2x-1-5)

G(x)=25-11-512x1-5-1+11+512x1+5-1

G(x)=25-11-512x1-5-1+11+512x1+5-1

G(x)=-25-512x1-5-1+25+512x1+5-1

06

Step 6:Simplify the obtained expression

Use k=0+xk=11-xto simplify the expression further;

G(x)=-25-5k=0+2x1-5k+25+5k=0+2x1+5k

G(x)=k=1+-25-52x1-5k+25+52x1+5kxk

Therefore, the required solution isak=-25-52x1-5k+25+52x1+5kak=-25-52x1-5k+25+52x1+5k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free