Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=2ak-1+3ak-2+4k+6with initial conditions.a0=20,a1=60

Short Answer

Expert verified

ak=-32+165·4k+674·3k+3120·(-1)k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1: Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak,of real numbers is the infinite series: G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

localid="1668610118668" (1+x)u=k=0+kxk

02

Step 2: Use Sequence for infinite series and Extended Binomial theorem

Equation is:

Let

G(x)=k=0+akxk

G(x)-a0-a1x=k=1+2ak-1+3ak-2+4k+6xk

G(x)-a0-a1x=2k=2+ak-1xk+3k=2+ak-2xk+k=2+4kxk+6k=2+xk

G(x)-a0-a1x=2xk=2+ak-1xk-1+3x2k=2+ak-2xk-2+16x2k=2+4k-2xk-2+6a

Whenlocalid="1668588629789" k2:

We thus obtained the equation

G(x)-a0-a1x=2xm=1+amxm+3x2n=0+anxn+16x2n=0+4nxn+6x2n=0+xn

G(x)-a0-a1x=2xG(x)-a0+3x2G(x)+16x2n=0+(4x)n+6x21-x

G(x)-a0-a1x=2xG(x)-a0+3x2G(x)+16x21-4x+6x21-x

G(x)-a0-a1x=2xG(x)-a0+3x2G(x)+22x2-40x3(1-x)(1-4x)

n=0+xn=11-xxn=11-x

We thus obtained the equation

G(x)-a0-a1x=2xG(x)-a0+3x2G(x)+22x2-40x3(1-x)(1-4x)

G(x)-a0-a1x=2xG(x)-a0+3x2G(x)+22x2-40x3(1-x)(1-4x)

a0=20;a1=60

Distributive property

G(x)-2xG(x)-3x2G(x)-20-60x=-40x+22x2-40x3(1-x)(1-4x)G(x)-2xG(x)-3x2G(x)

G(x)-2xG(x)-3x2G(x)-20-60x=20+20x+22x2-40x3(1-x)(1-4x)1-2x-3x2G(x)

G(x)-2xG(x)-3x2G(x)-20-60x=20+20x+22x2-40x3(1-x)(1-4x)

Add to each side.

G(x) &=\frac{20+20 x}{\left(1-2 x-3 x^{2}\right)}+\frac{22 x^{2}-40 x^{3}}{(1-x)(1-4 x)\left(1-2 x-3 x^{2}\right)} \text { Factor out } G(x) \\

G(x) &=\frac{20+20 x}{(1-3 x)(1+x)}+\frac{22 x^{2}-40 x^{3}}{(1-x)(1-4 x)(1-3 x)(1+x)} \text Divide each side by

1-2x-3x2G(x)=40x3+2x2-80x+20(1-x)(1-4x)(1-3x)(1+x)

We found an expression for , now we need to term the sequence .

First we will determine the partial fractions

40x3+2x2-80x+20(1-x)(1-4x)(1-3x)(1+x)=A1-x+B1-4x+C1-3x+D1+x

We will determine the values of the constants using technology (advised because we need to solve a system of 4 equations with 4 variables).

A=-32

B=165

C=674

D=3120

Thus we then obtain:G(x)=-3/21-x+16/51-4x+67/41-3x+31/201+x

Usingk=1+xk=11-x

G(x)=-32k=1+xk+165k=1+(4x)k+674k=1+(3x)k+3120k=1+(-x)k

G(x)=k=1+-32+165·4k+674·3k+3120·(-1)kxk

We then note .ak=-32+165·4k+674·3k+3120·(-1)k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free