Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=4ak-1-4ak-2+k2with initial conditions a0=2and a1=5.

Short Answer

Expert verified

ak=k2+8k+3k2k+1-9·2k+1+20

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem: (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

ak=4ak-1-4ak-2+k2a0=2a1=5

Let G(x)=k=0+akxk

G(x)-a0-a1x=k=2+akxkak=4ak-1-4ak-2+k2k1G(x)-a0-a1x=k=1+4ak-1-4ak-2+k2xkG(x)-a0-a1x=4k=2+ak-1xk-4k=2+ak-2xk+k=2+k2xkG(x)-a0-a1x=4xk=2+ak-1xk-1-4x2k=2+ak-2xk-2+x2k=2+k2xk-2

Let m=k-1and n=k-2

n=0+p+n-1nxn=1(1-x)p=4xG(x)-a0-4x2G(x)+2x2(1-x)3+x2(x-1)2+x21-xn=0+p+n-1nxn==4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3

We thus obtained the equation

G(x)-a0-a1x=4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3

G(x)-a0-a1x=4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3a0G(x)-a0-a1x=2;a1=5G(x)-2-5x=4x(G(x)-2)-4x2G(x)+x2x2-3x+4(1-x)3

Distributive property

G(x)-2-5x=4xG(x)-8x-4x2G(x)+x2x2-3x+4(1-x)3

Add-4xG(x)+4x2G(x)to each side

G(x)-4xG(x)+4x2G(x)-2-5x=-8x+x2x2-3x+4(1-x)3

Add 2+5x to each side

G(x)-4xG(x)+4x2G(x)=2-3x+x2x2-3x+4(1-x)3

Factor outG(x)

1-4x+4x2G(x)=2-3x+x2x2-3x+4(1-x)3

Divide each side by 1-4x+4x2

G(x)=2-3x1-4x+4x2+x2x2-3x+4(1-x)31-4x+4x2

Factorize denominator

G(x)2-3x(1-2x)2+x2x2-3x+4(1-x)3(1-2x)2G(x)=(2-3x)(1-x)3+x2x2-3x+4(1-x)3(1-2x)2G(x)=4x4-14x3+19x2-9x+2(1-x)3(1-2x)2

03

Simplify

We found an expression forG(x), now we need to term the sequence ak.

First we will determine the partial fractions

4x4-14x3+19x2-9x+2(1-x)3(1-2x)2=A1-x+B(1-x)2+C(1-x)3+D1-2x+E(1-2x)2

We will determine the values of the constants using technology (advised because we need to solve a system of 5 equations with 5 variables).

A=13B=5C=2D=-24E=6

Thus we then obtain:

G(x)=131-x+5(1-x)2+2(1-x)3+-241-2x+6(1-2x)2

Usingk=1+xk=11-xand

n=0+p+n-1nxn=1(1-x)pG(x)n=0+p+n-1nxn=13k=1+xk+5k=1+(k+1)xk+2k=1+3+k-1kxk-24k=1+(2x)k+6k=1+(k+1)(2x)kn=0+p+n-1nxn=k=1+13+5(k+1)+22+kk-24·2k+6(k+1)2kxkn=0+p+n-1nxn=k=1+k2+8k+3k2k+1-9·2k+1+20xk

We then noteak=k2+8k+3k2k+1-9·2k+1+20

ak=k2+12k+40+2k-1(45k-88)which is not the same (but similar) to the result in the back of the book, but their might be a calculation error in solution.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free