Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=4ak-1-4ak-2+k2with initial conditions a0=2and a1=5.

Short Answer

Expert verified

ak=k2+8k+3k2k+1-9·2k+1+20

Step by step solution

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem: (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

ak=4ak-1-4ak-2+k2a0=2a1=5

Let G(x)=k=0+akxk

G(x)-a0-a1x=k=2+akxkak=4ak-1-4ak-2+k2k1G(x)-a0-a1x=k=1+4ak-1-4ak-2+k2xkG(x)-a0-a1x=4k=2+ak-1xk-4k=2+ak-2xk+k=2+k2xkG(x)-a0-a1x=4xk=2+ak-1xk-1-4x2k=2+ak-2xk-2+x2k=2+k2xk-2

Let m=k-1and n=k-2

n=0+p+n-1nxn=1(1-x)p=4xG(x)-a0-4x2G(x)+2x2(1-x)3+x2(x-1)2+x21-xn=0+p+n-1nxn==4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3

We thus obtained the equation

G(x)-a0-a1x=4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3

G(x)-a0-a1x=4xG(x)-a0-4x2G(x)+x2x2-3x+4(1-x)3a0G(x)-a0-a1x=2;a1=5G(x)-2-5x=4x(G(x)-2)-4x2G(x)+x2x2-3x+4(1-x)3

Distributive property

G(x)-2-5x=4xG(x)-8x-4x2G(x)+x2x2-3x+4(1-x)3

Add-4xG(x)+4x2G(x)to each side

G(x)-4xG(x)+4x2G(x)-2-5x=-8x+x2x2-3x+4(1-x)3

Add 2+5x to each side

G(x)-4xG(x)+4x2G(x)=2-3x+x2x2-3x+4(1-x)3

Factor outG(x)

1-4x+4x2G(x)=2-3x+x2x2-3x+4(1-x)3

Divide each side by 1-4x+4x2

G(x)=2-3x1-4x+4x2+x2x2-3x+4(1-x)31-4x+4x2

Factorize denominator

G(x)2-3x(1-2x)2+x2x2-3x+4(1-x)3(1-2x)2G(x)=(2-3x)(1-x)3+x2x2-3x+4(1-x)3(1-2x)2G(x)=4x4-14x3+19x2-9x+2(1-x)3(1-2x)2

03

Simplify

We found an expression forG(x), now we need to term the sequence ak.

First we will determine the partial fractions

4x4-14x3+19x2-9x+2(1-x)3(1-2x)2=A1-x+B(1-x)2+C(1-x)3+D1-2x+E(1-2x)2

We will determine the values of the constants using technology (advised because we need to solve a system of 5 equations with 5 variables).

A=13B=5C=2D=-24E=6

Thus we then obtain:

G(x)=131-x+5(1-x)2+2(1-x)3+-241-2x+6(1-2x)2

Usingk=1+xk=11-xand

n=0+p+n-1nxn=1(1-x)pG(x)n=0+p+n-1nxn=13k=1+xk+5k=1+(k+1)xk+2k=1+3+k-1kxk-24k=1+(2x)k+6k=1+(k+1)(2x)kn=0+p+n-1nxn=k=1+13+5(k+1)+22+kk-24·2k+6(k+1)2kxkn=0+p+n-1nxn=k=1+k2+8k+3k2k+1-9·2k+1+20xk

We then noteak=k2+8k+3k2k+1-9·2k+1+20

ak=k2+12k+40+2k-1(45k-88)which is not the same (but similar) to the result in the back of the book, but their might be a calculation error in solution.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free