Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=ak-1+2ak-2+2kwith initial conditions a0=4anda1=12.

Short Answer

Expert verified

The solution to the recurrence relation is:

ak=389·2k+23·(k+1)·2k-89(-1)k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:

localid="1668594488558" G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

localid="1668594464892" (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

We have: ak=ak-1+2ak-2+2ka0=4a1=12

Let G(x)=k=0+akxk

G(x)-a0-a1x=k=2+akxkG(x)-a0-a1x=k=1+ak-1+2ak-2+2kxkakG(x)-a0-a1x=ak-1+2ak-2+2k

When,

G(x)-a0-a1x=k=2+akxk=k=1+ak-1+2ak-2+2kxkak=ak-1+2ak-2+2k

Let m=k-1and n=k-2

G(x)=xG(x)-a0+2x2G(x)+4x21-2xn=0+xn=11-x

G(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2x

Thus the obtained equation isG(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2x

G(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2xG(x)-4-12x=x(G(x)-4)+2x2G(x)+4x21-2xG(x)-4-12x=xG(x)-4x+2x2G(x)+4x21-2xG(x)-xG(x)-2x2G(x)-4-12x=-4x+4x21-2xG(x)-xG(x)-2x2G(x)=4+8x+4x21-2x1-x-2x2G(x)=4+8x+4x21-2x

Divide each side by1-x-2x2;

G(x)=4+8x1-x-2x2+4x2(1-2x)1-x-2x2G(x)=4+8x(1-2x)(x+1)+4x2(1-2x)2(x+1)

Factorize denominator,

G(x)=(4+8x)(1-2x)+4x2(1-2x)2(x+1)G(x)=4-16x2+4x2(1-2x)2(x+1)G(x)=4-12x2(1-2x)2(x+1)
03

Simplify

Using the partial fractions,

4-12x2(1-2x)2(x+1)=A1-2x+B(1-2x)2+C1+x4-12x2(1-2x)2(x+1)=A(1-2x)(1+x)+B(1+x)+C(1-2x)2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=A(1-2x)(1+x)+B(1+x)+C1-4x+4x2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=A-2x2-x+1+B(1+x)+C1-4x+4x2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=x2(-2A+4C)+x(-A+B-4C)+(A+B+C)(1-2x)2(x+1)

The numerators have to be identical:

-2A+4C=-12-A+B-4C=0A+B+C=4

Subtract the second and third equations,

-2A+4C=-12-2A-5C=-4

Subtract the two equations

9C=-8C=-89

Determine the other constants;

A=6-2C=6-169=389B=4-A-C=4-389+89=23

Thus the obtained equation is:

G(x)=38/91-2x+2/3(1-2x)2-8/91+x

Using k=1+xk=11-xand k=1+(k+1)xk=1(1-x)2

role="math" localid="1668595806887" G(x)=389k=1+(2x)k+23k=1+(k+1)(2x)k-89k=1+(-x)kG(x)=k=1+389·2k+23·(k+1)·2k-89(-1)kxk

Therefore., ak=389·2k+23·(k+1)·2k-89(-1)k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the coefficient of \({x^{10}}\) in the power series of each of these functions.

a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)

b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)

c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)

d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)

e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)

If G(x) is the generating function for the sequence{ak}, what is the generating function for each of these sequences?

a) 0,0,0,a3,a4,a5,(Assuming that terms follow the pattern of all but the first three terms)

b)a0,0,a1,0,a2,0,

c) 0,0,0,0,a0,a1,a2,(Assuming that terms follow the pattern of all but the first four terms)

d)a0,2a1,4a2,8a3,16a4,

e) 0,a0,a1/2,a2/3,a3/4, [Hint: Calculus required here.]

f) a0,a0+a1,a0+a1+a2,a0+a1+a2+a3,

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({\left( {{x^2} + 1} \right)^3}\)

b) \({(3x - 1)^3}\)

c) \(1/\left( {1 - 2{x^2}} \right)\)

d) \({x^2}/{(1 - x)^3}\)

e) \(x - 1 + (1/(1 - 3x))\)

f) \(\left( {1 + {x^3}} \right)/{(1 + x)^3}\)

g) \(x/\left( {1 + x + {x^2}} \right)\)

h) \({e^{3{x^2}}} - 1\)

For each of these generating functions, provide a closed formula for the sequence it determines.

a) \({(3x - 4)^3}\)

b) \({\left( {{x^3} + 1} \right)^3}\)

c) \(1/(1 - 5x)\)

d) \({x^3}/(1 + 3x)\)

e) \({x^2} + 3x + 7 + \left( {1/\left( {1 - {x^2}} \right)} \right)\)

f) \(\left( {{x^4}/\left( {1 - {x^4}} \right)} \right) - {x^3} - {x^2} - x - 1\)

g) \({x^2}/{(1 - x)^2}\)

h) \(2{e^{2x}}\)

Use generating functions to find the number of ways to make change for \(100 using

a) \)10, \(20, and \)50 bills.

b) \(5, \)10, \(20, and \)50 bills.

c) \(5, \)10, \(20, and \)50 bills if at least one bill of each denomination is used.

d) \(5, \)10, and $20 bills if at least one and no more than four of each denomination is used.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free