Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=ak-1+2ak-2+2kwith initial conditions a0=4anda1=12.

Short Answer

Expert verified

The solution to the recurrence relation is:

ak=389·2k+23·(k+1)·2k-89(-1)k

Step by step solution

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:

localid="1668594488558" G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

localid="1668594464892" (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

We have: ak=ak-1+2ak-2+2ka0=4a1=12

Let G(x)=k=0+akxk

G(x)-a0-a1x=k=2+akxkG(x)-a0-a1x=k=1+ak-1+2ak-2+2kxkakG(x)-a0-a1x=ak-1+2ak-2+2k

When,

G(x)-a0-a1x=k=2+akxk=k=1+ak-1+2ak-2+2kxkak=ak-1+2ak-2+2k

Let m=k-1and n=k-2

G(x)=xG(x)-a0+2x2G(x)+4x21-2xn=0+xn=11-x

G(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2x

Thus the obtained equation isG(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2x

G(x)-a0-a1x=xG(x)-a0+2x2G(x)+4x21-2xG(x)-4-12x=x(G(x)-4)+2x2G(x)+4x21-2xG(x)-4-12x=xG(x)-4x+2x2G(x)+4x21-2xG(x)-xG(x)-2x2G(x)-4-12x=-4x+4x21-2xG(x)-xG(x)-2x2G(x)=4+8x+4x21-2x1-x-2x2G(x)=4+8x+4x21-2x

Divide each side by1-x-2x2;

G(x)=4+8x1-x-2x2+4x2(1-2x)1-x-2x2G(x)=4+8x(1-2x)(x+1)+4x2(1-2x)2(x+1)

Factorize denominator,

G(x)=(4+8x)(1-2x)+4x2(1-2x)2(x+1)G(x)=4-16x2+4x2(1-2x)2(x+1)G(x)=4-12x2(1-2x)2(x+1)
03

Simplify

Using the partial fractions,

4-12x2(1-2x)2(x+1)=A1-2x+B(1-2x)2+C1+x4-12x2(1-2x)2(x+1)=A(1-2x)(1+x)+B(1+x)+C(1-2x)2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=A(1-2x)(1+x)+B(1+x)+C1-4x+4x2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=A-2x2-x+1+B(1+x)+C1-4x+4x2(1-2x)2(x+1)4-12x2(1-2x)2(x+1)=x2(-2A+4C)+x(-A+B-4C)+(A+B+C)(1-2x)2(x+1)

The numerators have to be identical:

-2A+4C=-12-A+B-4C=0A+B+C=4

Subtract the second and third equations,

-2A+4C=-12-2A-5C=-4

Subtract the two equations

9C=-8C=-89

Determine the other constants;

A=6-2C=6-169=389B=4-A-C=4-389+89=23

Thus the obtained equation is:

G(x)=38/91-2x+2/3(1-2x)2-8/91+x

Using k=1+xk=11-xand k=1+(k+1)xk=1(1-x)2

role="math" localid="1668595806887" G(x)=389k=1+(2x)k+23k=1+(k+1)(2x)k-89k=1+(-x)kG(x)=k=1+389·2k+23·(k+1)·2k-89(-1)kxk

Therefore., ak=389·2k+23·(k+1)·2k-89(-1)k

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free