Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=5ak-1-6ak-2with initial conditions a0=6and a1=30.

Find the coefficient of x5y8in(x+y)13.

Short Answer

Expert verified
  • ak=18·3k-12·2k

Step by step solution

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak,of real numbers is the infinite series:

G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

(1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem.

The given equation isak=5ak-1-6ak-2,a0=6,a1=30

Let G(x)=k=0+akxk

ak=5ak-1+6ak-2, when k1

G(x)-a0-a1x=5k=2+ak-1xk-6k=2+ak-2xkG(x)-a0-a1x=5xk=2+ak-1xk-1-6x2k=2+ak-2xk-2G(x)-a0-a1x=5xm=1+amxm-6x2n=0+anxn

Let m=k-1and n=k-2

G(x)-a0-a1x=5xG(x)-a0-6x2G(x)

Thus obtained the equation isG(x)-a0-a1x=5xG(x)-a0-6x2G(x)

G(x)-a0-a1x=5xG(x)-a0-6x2G(x)G(x)-6-30x=5x(G(x)-6)-6x2G(x)

a0=6and a1=30

localid="1668593092016" G(x)-6-30x=5xG(x)-30x-6x2G(x)G(x)-5xG(x)+6x2G(x)-6-30x=-30x

G(x)-6-30x=5xG(x)-30x-6x2G(x)G(x)-5xG(x)+6x2G(x)-6-30x=-30x

Add -5xG(x)+6x2G(x)to each side:

G(x)-5xG(x)+6x2G(x)=6

Add 6+30xto each side.

1-5x+6x2G(x)=6

Factor outG(x)

1-5x+6x2G(x)=6

Factor outG(x), and divide each side by1-5x-6x2: G(x)=61-5x+6x2

Factorize denominatorG(x)=6(3x-1)(2x-1)

03

Simplify

We found an expression forG(x), now we need to terminate the sequence\[\left\{ {{a}_{k}} \right\}\].

First, we will determine the partial fractions;

6(3x-1)(2x-1)=A3x-1+B2x-16(3x-1)(2x-1)=A(2x-1)+B(3x-1)(3x-1)(2x-1)6(3x-1)(2x-1)=2Ax-A+3Bx-B(3x-1)(2x-1)6(3x-1)(2x-1)=(-A-B)+(2A+3B)x(3x-1)(2x-1)

The numerators have to be identical:

-A-B=62A+3B=0

Multiply the first equation by 2

-2A-2B=122A+3B=0

Add the two equations B=12

Determine the other constant: A=-B-6=-12-6=-18

Thus we then obtain:G(x)=-183x-1+122x-1=181-3x-121-2x

Using k=1+xk=11-x

G(x)=18k=1+(3x)k-12k=1+(2x)kG(x)=18k=1+3kxk-12k=1+2kxkG(x)=k=1+18·3k-12·2kxk

Therefore,ak=18·3k-12·2k

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free