Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=5ak-1-6ak-2with initial conditions a0=6and a1=30.

Find the coefficient of x5y8in(x+y)13.

Short Answer

Expert verified
  • ak=18·3k-12·2k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak,of real numbers is the infinite series:

G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

(1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem.

The given equation isak=5ak-1-6ak-2,a0=6,a1=30

Let G(x)=k=0+akxk

ak=5ak-1+6ak-2, when k1

G(x)-a0-a1x=5k=2+ak-1xk-6k=2+ak-2xkG(x)-a0-a1x=5xk=2+ak-1xk-1-6x2k=2+ak-2xk-2G(x)-a0-a1x=5xm=1+amxm-6x2n=0+anxn

Let m=k-1and n=k-2

G(x)-a0-a1x=5xG(x)-a0-6x2G(x)

Thus obtained the equation isG(x)-a0-a1x=5xG(x)-a0-6x2G(x)

G(x)-a0-a1x=5xG(x)-a0-6x2G(x)G(x)-6-30x=5x(G(x)-6)-6x2G(x)

a0=6and a1=30

localid="1668593092016" G(x)-6-30x=5xG(x)-30x-6x2G(x)G(x)-5xG(x)+6x2G(x)-6-30x=-30x

G(x)-6-30x=5xG(x)-30x-6x2G(x)G(x)-5xG(x)+6x2G(x)-6-30x=-30x

Add -5xG(x)+6x2G(x)to each side:

G(x)-5xG(x)+6x2G(x)=6

Add 6+30xto each side.

1-5x+6x2G(x)=6

Factor outG(x)

1-5x+6x2G(x)=6

Factor outG(x), and divide each side by1-5x-6x2: G(x)=61-5x+6x2

Factorize denominatorG(x)=6(3x-1)(2x-1)

03

Simplify

We found an expression forG(x), now we need to terminate the sequence\[\left\{ {{a}_{k}} \right\}\].

First, we will determine the partial fractions;

6(3x-1)(2x-1)=A3x-1+B2x-16(3x-1)(2x-1)=A(2x-1)+B(3x-1)(3x-1)(2x-1)6(3x-1)(2x-1)=2Ax-A+3Bx-B(3x-1)(2x-1)6(3x-1)(2x-1)=(-A-B)+(2A+3B)x(3x-1)(2x-1)

The numerators have to be identical:

-A-B=62A+3B=0

Multiply the first equation by 2

-2A-2B=122A+3B=0

Add the two equations B=12

Determine the other constant: A=-B-6=-12-6=-18

Thus we then obtain:G(x)=-183x-1+122x-1=181-3x-121-2x

Using k=1+xk=11-x

G(x)=18k=1+(3x)k-12k=1+(2x)kG(x)=18k=1+3kxk-12k=1+2kxkG(x)=k=1+18·3k-12·2kxk

Therefore,ak=18·3k-12·2k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free