Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relationak=3ak-1+4k-1 with the initial conditiona0=1.

Short Answer

Expert verified

ak=4k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:localid="1668591975072" G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem: (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

Equation is:

ak=3ak-1+4k-1a0=1

Let G(x)=k=0+akxk

G(x)-a0=k=1+akxkG(x)-a0=k=1+3ak-1+4k-1xkakG(x)-a0=3ak-1+4k-1

Where k1

G(x)-a0=3k=1+ak-1xk+k=1+4k-1xkG(x)-a0=3xk=1+ak-1xk-1+xk=1+4k-1xk-1G(x)-a0=3xm=0+amxm+xm=0+(4x)m

Let m=k-1

G(x)-a0=3xG(x)+x1-4xk=1+xk=11-x
03

Simplify

We thus obtained the equation G(x)-a0=3xG(x)+x1-4x G(x)-a0=3xG(x)+x1-4xG(x)-1=3xG(x)+x1-4x

a0=1. Now subtract3xG(x)

from each side: G(x)-3xG(x)-1=x1-4x

Factor out G(x):

(1-3x)G(x)-1=x1-4x

(1-3x)G(x)=-3x+11-4x

Divide each side by 1-3x: G(x)=1(1-4x)

Using k=1+xk=11-x

G(x)=k=1+(4x)k=k=1+4kxk

We then get ak=4k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free