Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relationak=3ak-1+4k-1 with the initial conditiona0=1.

Short Answer

Expert verified

ak=4k

Step by step solution

01

Sequence for infinite series and Extended Binomial theorem

Generating function for the sequence a0,a1,,ak, of real numbers is the infinite series:localid="1668591975072" G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem: (1+x)u=k=0+(uk)xk

02

Use Sequence for infinite series and Extended Binomial theorem

Equation is:

ak=3ak-1+4k-1a0=1

Let G(x)=k=0+akxk

G(x)-a0=k=1+akxkG(x)-a0=k=1+3ak-1+4k-1xkakG(x)-a0=3ak-1+4k-1

Where k1

G(x)-a0=3k=1+ak-1xk+k=1+4k-1xkG(x)-a0=3xk=1+ak-1xk-1+xk=1+4k-1xk-1G(x)-a0=3xm=0+amxm+xm=0+(4x)m

Let m=k-1

G(x)-a0=3xG(x)+x1-4xk=1+xk=11-x
03

Simplify

We thus obtained the equation G(x)-a0=3xG(x)+x1-4x G(x)-a0=3xG(x)+x1-4xG(x)-1=3xG(x)+x1-4x

a0=1. Now subtract3xG(x)

from each side: G(x)-3xG(x)-1=x1-4x

Factor out G(x):

(1-3x)G(x)-1=x1-4x

(1-3x)G(x)=-3x+11-4x

Divide each side by 1-3x: G(x)=1(1-4x)

Using k=1+xk=11-x

G(x)=k=1+(4x)k=k=1+4kxk

We then get ak=4k

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free