Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to solve the recurrence relation ak=3ak-1+2with the initial conditiona0=1.

Short Answer

Expert verified

The solution to the given recurrence relation is:

ak=-1+2·3k

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Use Generating Function:

Generating function for the sequence a0,a1,,ak,of real numbers is the infinite series:

localid="1668589809758" G(x)=a0+a1x+a2x2++akxk+=k=0+akxk

Extended binomial theorem:

localid="1668589851366" (1+x)u=k=0+(uk)xk

Let

G(x)-a0=k=1+akxk=k=1+3ak-1+2xkak=3ak-1+2whenk1=3k=1+ak-1xk+2k=1+xk=3xk=1+ak-1xk-1+2xk=1+xk-1=3xm=0+amxm+2xm=0+xmLetm=k-1,k=1+xk=11-x=3xG(x)+2x1-x

localid="1668589150401" G(x)=k=0+akxk

02

Calculate the expression for G(x).

G(x)-a0=3xG(x)+2x1-xG(x)-1=3xG(x)+2x1-xG(x)-3xG(x)-1=2x1-x(1-3x)G(x)-1=2x1-x(1-3x)G(x)=2x1-x+1(1-3x)G(x)=1+x1-xG(x)=1+x(1-x)(1-3x)
03

determine the partial fractions:

1+x(1-x)(1-3x)=A1-x+B1-3x=A(1-3x)+B(1-x)(1-x)(1-3x)=A-3Ax+B-Bx(1-x)(1-3x)=(A+B)+(-3A-B)x(1-x)(1-3x)

The numerators have to be identical:

localid="1668590010430" A+B=1-3A-B=1

Add the two equations,

-2A=2A=-1

Determine the other constant;

B=1-A=1-(-1)=1+1=2

Thus, we then obtain:

G(x)=-11-x+21-3x

Usingk=1+xk=11-x

G(x)=-k=1+xk+2k=1+(3x)k=-k=1+xk+2k=1+(3x)k=k=1+-1+2·3kxk

Thus,ak=-1+2·3k

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free