Chapter 8: Q1E (page 549)
Find the generating function for the finite sequence 2,2,2,2,2.
Short Answer
The required result is .
Chapter 8: Q1E (page 549)
Find the generating function for the finite sequence 2,2,2,2,2.
The required result is .
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the coefficient of \({x^{10}}\) in the power series of each of these functions.
a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)
b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)
c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)
d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)
e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)
Suppose that the function satisfies the recurrence relation whenever is a perfect square greater than and .
a) Find .
b) Give a big -estimate for. [Hint: Make the substitution ].
Suppose that when is a positive integer divisible by 5 , and . Find
Prove Theorem 4.
(a) Show that ifis a positive integer, then
(b) Use the extended binomial theorem and part (a) to show that the coefficient of in the expansion ofisfor all nonnegative integers
What do you think about this solution?
We value your feedback to improve our textbook solutions.