Now, we will compare the function when \(n = {2^k}\) is,
\(f\left( n \right) = f\left( {\frac{n}{2}} \right) + {n^2}\)
By using the formula of Divide-and-conquer recurrence relation,
Here, \(a = 1\), \(b\) is equal to \(2\) and \(g\left( n \right)\) is equal to \({n^2}\).
We get,
\(f\left( n \right) = {1^k}f\left( 1 \right) + \sum\limits_{j = 0}^{k - 1} {{1^j}g} \left( {\frac{{{2^k}}}{{{2^j}}}} \right)\)
\( = 1\left( {\left( {\frac{{{2^k}}}{{{2^0}}}} \right) + \left( {\frac{{{2^k}}}{{{2^1}}}} \right) + .... + {{\left( {\frac{{{2^k}}}{{{2^{k - 1}}}}} \right)}^2}} \right)\)
\( = 1 + \frac{{{2^2}\left( {{2^{2k}} - 1} \right)}}{{{{\left( 2 \right)}^2} - 1}}\)
\( = \frac{{4{n^2} - 1}}{3}\)
Thus, the solution for the given recurrence relation is \(\frac{{4{n^2} - 1}}{3}\).