Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use generating functions to find the number of ways to choose a dozen bagels from three varieties—egg, salty, and plain—if at least two bagels of each kind but no more than three salty bagels are chosen.

Short Answer

Expert verified

There are then 13 ways to obtain 12 dozen bagels.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Use Generating Function:

Generating function for the sequence\({a_0},{a_1}, \ldots ,{a_k}, \ldots \)of real numbers is the infinite series;

\(G(x) = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_k}{x^k} + \ldots = \sum\limits_{k = 0}^{ + \infty } {{a_k}} {x^k}\)

Extended binomial theorem;

\({(1 + x)^u} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\)

Each variety is present at least 2 times in the dozen bagels, the series representing

\({x^2} + {x^3} + {x^4} + \ldots \)

The variety of salty bagels, however, can only be chosen at most 3 times.

\({x^2} + {x^3}\)

02

There are 2 varieties, besides the salty bagels is given by:

\(\begin{eqnarray}\left( {{x^2} + {x^3}} \right){\left( {{x^2} + {x^3} + {x^4} + \ldots .} \right)^2} &=& {\left( {{x^2}} \right)^3}(1 + x){\left( {1 + x + {x^2} + \ldots } \right)^2}\\ &=&{x^6}\left( {\sum\limits_{k = 0}^1 {{x^k}} } \right){\left( {\sum\limits_{k = 0}^{ + \infty } {{x^k}} } \right)^2}\\ &=&{x^6}\left( {\frac{{1 - {x^2}}}{{1 - x}}} \right){\left( {\sum\limits_{k = 0}^{ + \infty } {{x^k}} } \right)^2}\\ &=& {x^6}\left( {\frac{{1 - {x^2}}}{{1 - x}}} \right){\left( {\frac{1}{{1 - x}}} \right)^2}\\ &=& {x^6} \cdot \left( {1 - {x^2}} \right) \cdot {(1 + ( - x))^{ - 3}}\end{eqnarray}\)

By further simplification:

\(\begin{eqnarray} &=&{x^6} \cdot \left( {1 - {x^2}} \right) \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\\ &=& {x^6} \cdot \sum\limits_{m = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\m\end{array}} \right)} {( - 1)^m}{x^m} - {x^8} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^k}\\ &=& {x^6} \cdot \sum\limits_{m = 0}^{ + \infty } {{b_m}} {x^m} - {x^8} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^k}\end{eqnarray}\)

Let \({b_m} = \left( {\begin{array}{*{20}{c}}{ - 3}\\m\end{array}} \right){( - 1)^m}\) and \({c_k} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\)

03

The coefficient of \({x^{12}}\) which is obtained if \(m = 6\;and\;k = 4\).

The coefficient of \({x^{12}}\) is then the sum of the coefficients for each possible combination of \(m\) and \(k\) :

\(\begin{eqnarray}{a_{12}} &=& {b_6} - {c_4}\\ &=& \left( {\begin{array}{*{20}{c}}{ - 3}\\6\end{array}} \right){( - 1)^6} - \left( {\begin{array}{*{20}{c}}{ - 3}\\4\end{array}} \right){( - 1)^4}\\ &=& 28 - 15\\ &=& 13\end{eqnarray}\)

Thus, there are then 13 ways to obtain 12 dozen bagels according to the specified restrictions.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free