Since \(m\) and \(k\) are nonnegative:
\(\begin{array}{*{20}{r}}{m = 0,k = 9}\\{{\rm{ or }}m = 1,k = 6}\\{{\rm{ or }}m = 2,k = 3}\\{{\rm{ or }}m = 3,k = 0}\end{array}\)
The coefficient of \({x^{15}}\) is then the sum of the coefficients for each possible combination of \(m\) and\(k\):
\(\begin{array}{c}{a_{15}} = {b_0}{c_9} + {b_1}{c_6} + {b_2}{c_3} + {b_3}{c_0}\\ = \left( {\begin{array}{*{20}{l}}6\\0\end{array}} \right){( - 1)^0}\left( {\begin{array}{*{20}{c}}{ - 6}\\9\end{array}} \right){( - 1)^9} + \left( {\begin{array}{*{20}{l}}6\\1\end{array}} \right){( - 1)^1}\left( {\begin{array}{*{20}{c}}{ - 6}\\6\end{array}} \right){( - 1)^6}\\ + \left( {\begin{array}{*{20}{l}}6\\2\end{array}} \right){( - 1)^2}\left( {\begin{array}{*{20}{c}}{ - 6}\\3\end{array}} \right){( - 1)^3} + \left( {\begin{array}{*{20}{l}}6\\3\end{array}} \right){( - 1)^3}\left( {\begin{array}{*{20}{c}}{ - 6}\\0\end{array}} \right){( - 1)^0}\\ = 2002 - 2772 + 840 - 20\\ = 50\end{array}\)
Thus, there are then 50 ways to give 15 stuffed animals to each of six children such that each child receives at least 1 and at most 3 stuffed animals.