Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the coefficient of \({x^{12}}\) in the power series of each of these functions.

a) \(1/(1 + 3x)\)

b) \(1/(1 + 3x)\)

c) \(1/{(1 + x)^8}\)

d) \(1/{(1 - 4x)^3}\)

e) \({x^3}/{(1 + 4x)^2}\)

Short Answer

Expert verified

The coefficient of \({x^{12}}\) in the power series of each of these functions is given below;

(a) 531,441

(b) 53,248

(c) 50,388

(d)1,526,726,656

(e) -2,621,440

Step by step solution

01

Use Extended Binomial Theorem:

a).

The Extended Binomial Theorem: Let \(x\) be a real number with \(|x| < 1\) and let \(u\) be a real number. Then

\({(1 + x)^u} = \sum\limits_{k = 0}^\infty {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\)

\(\begin{array}{c}\frac{1}{{1 + 3x}} = \frac{1}{{1 - ( - 3x)}}\\ = \sum\limits_{k = 0}^{ + \infty } {{{( - 3x)}^k}} \\ = \sum\limits_{k = 0}^{ + \infty } {{{( - 3)}^k}} {x^k}\end{array}\)

The coefficient is thus in general \({a_k} = {( - 3)^k}\)

The coefficient of \({x^{12}}\) is then the case \(k = 12\) :

\(\begin{array}{c}{a_{12}} = {( - 3)^{12}}\\ = 531,441\end{array}\)

02

Use Extended Binomial Theorem:

b).

\(\begin{array}{c}\frac{1}{{{{(1 - 2x)}^2}}} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{2 + k - 1}\\k\end{array}} \right)} {(2x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{1 + k}\\k\end{array}} \right)} {2^k}{x^k}\end{array}\)

The coefficient is thus in general

\({a_k} = \left( {\begin{array}{*{20}{c}}{1 + k}\\k\end{array}} \right){2^k}\)

The coefficient of \({x^{12}}\) is then the case\(k = 12\):

\(\begin{array}{c}{a_{12}} = \left( {\begin{array}{*{20}{c}}{1 + 12}\\{12}\end{array}} \right){2^{12}}\\ = 13 \cdot {2^{12}}\\ = 53,248\end{array}\)

03

Use Extended Binomial Theorem:

c).

\(\begin{array}{c}\frac{1}{{{{(1 + x)}^8}}} = \frac{1}{{{{(1 - ( - x))}^8}}}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{8 + k - 1}\\k\end{array}} \right)} {( - x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{7 + k}\\k\end{array}} \right)} {( - 1)^k}{x^k}\end{array}\)

The coefficient is thus in general;

\({a_k} = \left( {\begin{array}{*{20}{c}}{7 + k}\\k\end{array}} \right){( - 1)^k}\)

The coefficient of \({x^{12}}\) is then the case\(k = 12\):

\(\begin{array}{c}{a_{12}} = \left( {\begin{array}{*{20}{c}}{7 + 12}\\{12}\end{array}} \right){( - 1)^{12}}\\ = \left( {\begin{array}{*{20}{l}}{19}\\{12}\end{array}} \right)\\ = 50,388\end{array}\)

04

Use Extended Binomial Theorem:

d).

\[\begin{array}{c}\frac{1}{{{{(1 - 4x)}^3}}} = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{3 + k - 1}\\k\end{array}} \right)} {(4x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right)} {4^k}{x^k}\end{array}\]

The coefficient is thus in general;

\({a_k} = \left( {\begin{array}{*{20}{c}}{2 + k}\\k\end{array}} \right){4^k}\)$

The coefficient of \({x^{12}}\) is then the case\(k = 12\):

\(\begin{array}{c}{a_{12}} = \left( {\begin{array}{*{20}{c}}{2 + 12}\\{12}\end{array}} \right){4^{12}}\\ = \frac{{14(13)}}{2} \cdot {4^{12}}\\ = 1,526,726,656\end{array}\)

05

Use Extended Binomial Theorem:

e).

\(\begin{array}{c}\frac{{{x^3}}}{{{{(1 + 4x)}^2}}} = {x^3} \cdot \frac{1}{{{{(1 - ( - 4x))}^2}}}\\ = {x^3} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{2 + k - 1}\\k\end{array}} \right)} {( - 4x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{1 + k}\\k\end{array}} \right)} {( - 4)^k}{x^{k + 3}}\end{array}\)

The coefficient is thus in general;

\({a_{k + 3}} = \left( {\begin{array}{*{20}{c}}{1 + k}\\k\end{array}} \right){( - 4)^k}\)

The coefficient of \({x^{12}}\) is then the case\(k = 9\):

\({a_{12}} = \left( {\begin{array}{*{20}{c}}{1 + 9}\\9\end{array}} \right){( - 4)^9} = - 10 \cdot {4^9} = - 2,621,440\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose that f(n)=2f(n/2)+3when n is an even positive integer, and f(1)=5. Find

a)f(2)

b)f(8).

c)f(64).

d)f(1024).

Suppose that in Example 8of Section 8.1a pair of rabbits leaves the island after reproducing twice. Find a recurrence relation for the number of rabbits on the island in the middle of the nth month.

Use Exercise 31 to show that if a<bd, thenf(n)isO(nlogba).

Find a closed form for the generating function for each of these sequences. (For each sequence, use the most obvious choice of a sequence that follows the pattern of the initial terms listed.)

a) \(0,2,2,2,2,2,2,0,0,0,0,0, \ldots \)

b) \(0,0,0,1,1,1,1,1,1, \ldots \)

c) \(0,1,0,0,1,0,0,1,0,0,1, \ldots \)

d) \(2,4,8,16,32,64,128,256, \ldots \)

e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0,0, \ldots \)

f) \(2, - 2,2, - 2,2, - 2,2, - 2, \ldots \)

g) \(1,1,0,1,1,1,1,1,1,1, \ldots \)

h) \(0,0,0,1,2,3,4, \ldots \)

Find a closed form for the generating function for the sequence\(\left\{ {{a_n}} \right\}\), where

a) \({a_n} = - 1\) for all\(n = 0,1,2, \ldots \).

b) \({a_n} = {2^n}\)for\(n = 1,2,3,4, \ldots \)and\({a_0} = 0\).

c) \({a_n} = n - 1\)for\(n = 0,1,2, \ldots \).

d) \({a_n} = 1/(n + 1)!\)for\(n = 0,1,2, \ldots \)

e) \({a_n} = \left( {\begin{array}{*{20}{l}}n\\2\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

f) \({a_n} = \left( {\begin{array}{*{20}{c}}{10}\\{n + 1}\end{array}} \right)\)for\(n = 0,1,2, \ldots \)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free