Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Give a big- Oestimate for the functionf in Exercise 10 iff is an increasing function.

Short Answer

Expert verified

O(logn)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Master Theorem definition

In MASTER THEOREM, let fbe an increasing function that satisfies the recurrence relationf(n)=af(n/b)+cndwhenever, whereis a positive integer,is an integer greater than, andandare real numbers withpositive andnonnegative. Thenisififand if .

02

Apply Master Theorem

Apply Master theorem with a=1,b=2,c=1, and d=0. Here a=bd, we have that f(n)is Ondlogn=O(logn).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a closed form for the generating function for each of these sequences. (For each sequence, use the most obvious choice of a sequence that follows the pattern of the initial terms listed.)

a) \(0,2,2,2,2,2,2,0,0,0,0,0, \ldots \)

b) \(0,0,0,1,1,1,1,1,1, \ldots \)

c) \(0,1,0,0,1,0,0,1,0,0,1, \ldots \)

d) \(2,4,8,16,32,64,128,256, \ldots \)

e) \(\left( {\begin{array}{*{20}{l}}7\\0\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\1\end{array}} \right),\left( {\begin{array}{*{20}{l}}7\\2\end{array}} \right), \ldots ,\left( {\begin{array}{*{20}{l}}7\\7\end{array}} \right),0,0,0,0,0, \ldots \)

f) \(2, - 2,2, - 2,2, - 2,2, - 2, \ldots \)

g) \(1,1,0,1,1,1,1,1,1,1, \ldots \)

h) \(0,0,0,1,2,3,4, \ldots \)

A sequence \({a_1},{a_2},.....,{a_n}\) is unimodal if and only if there is an index \(m,1 \le m \le n,\) such that \({a_i} < {a_i} + 1\) when \(1{1 < i < m}\) and \({a_i} > {a_{i + 1}}\) when \(m \le i < n\). That is, the terms of the sequence strictly increase until the \(m\)th term and they strictly decrease after it, which implies that \({a_m}\) is the largest term. In this exercise, \({a_m}\) will always denote the largest term of the unimodal sequence \({a_1},{a_2},.....,{a_n}\).

a) Show that \({a_m}\) is the unique term of the sequence that is greater than both the term immediately preceding it and the term immediately following it.

b) Show that if \({a_i} < {a_i} + 1\) where \(1 \le i < n\), then \(i + 1 \le m \le n\).

c) Show that if \({a_i} > {a_{i + 1}}\) where \(1 \le i < n\), then \(1 \le m \le i\).

d) Develop a divide-and-conquer algorithm for locating the index \(m\). (Hint: Suppose that \(i < m < j\). Use parts (a), (b), and (c) to determine whether \(((i + j)/2) + 1 \le m \le n,\) \(1 \le m \le ((i + j)/2) - 1,\) or \(m = ((i + j)/2)\)

Set up a divide-and-conquer recurrence relation for the number of modular multiplications required to compute \({a^n}\,\bmod \,\;m,\) where\(a,\;n\), and \(n\) are positive integers, using the recursive algorithms from Example 4 in Section 5.4.

b) Use the recurrence relation you found in part (a) to construct a big-\(O\)estimate for the number of modular multiplications used to compute\({a^n}\,\bmod \,\;m\)using the recursive algorithm.

Solve the recurrence relationan=an-13an-22 if a0=2anda1=2 . (See the hint for Exercise 9.)

Give a big- \(O\) estimate for the function\(f\)in Exercise\(36\)if\(f\)is an increasing function.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free