Chapter 8: Q10SE (page 567)
Solve the recurrence relation if and . (See the hint for Exercise 9.)
Short Answer
The solution of recurrence is
Chapter 8: Q10SE (page 567)
Solve the recurrence relation if and . (See the hint for Exercise 9.)
The solution of recurrence is
All the tools & learning materials you need for study success - in one app.
Get started for freeUse generating functions to find the number of ways to select 14 balls from a jar containing 100 red balls, 100 blue balls, and 100 green balls so that no fewer than 3 and no more than 10 blue balls are selected. Assume that the order in which the balls are drawn does not matter.
Find the solution of the recurrence relation ifand
Suppose that when is a positive integer divisible by 5 , and . Find
Find the coefficient of \({x^{10}}\) in the power series of each of these functions.
a) \({\left( {1 + {x^5} + {x^{10}} + {x^{15}} + \cdots } \right)^3}\)
b) \({\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7} + \cdots } \right)^3}\)
c) \(\left( {{x^4} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4} + {x^5} + {x^6} + {x^7}} \right)(1 + x + \left. {{x^2} + {x^3} + {x^4} + \cdots } \right)\)
d) \(\left( {{x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {{x^3} + {x^6} + {x^9} + } \right. \cdots \left( {{x^4} + {x^8} + {x^{12}} + \cdots } \right)\)
e) \(\left( {1 + {x^2} + {x^4} + {x^6} + {x^8} + \cdots } \right)\left( {1 + {x^4} + {x^8} + {x^{12}} + } \right. \cdots )\left( {1 + {x^6} + {x^{12}} + {x^{18}} + \cdots } \right)\)
Use generating functions to solve the recurrence relation with the initial condition.
What do you think about this solution?
We value your feedback to improve our textbook solutions.