Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the coefficient of \({x^9}\) in the power series of each of these functions.

a) \({\left( {1 + {x^3} + {x^6} + {x^9} + \cdots } \right)^3}\)

b) \({\left( {{x^2} + {x^3} + {x^4} + {x^5} + {x^6} + \cdots } \right)^3}\)

c) \(\left( {{x^3} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4}} \right)\left( {x + {x^2} + {x^3} + {x^4} + \cdots } \right)\)

d) \(\left( {x + {x^4} + {x^7} + {x^{10}} + \cdots } \right)\left( {{x^2} + {x^4} + {x^6} + {x^8} + } \right.\)\( \cdots )\)

e) \({\left( {1 + x + {x^2}} \right)^3}\)

Short Answer

Expert verified

The coefficient of \({x^9}\) in the power series of each of the given functions is given below;

(a) 10

(b) 10

(c) 3

(d) 2

(e) 0

Step by step solution

01

a). Step 1: Use Extended Binomial Theorem:

The Extended Binomial Theorem: Let\(x\)be a real number with\(|x| < 1\)and let\(u\)be a real number. Then

\({(1 + x)^u} = \sum\limits_{k = 0}^\infty {\left( {\begin{array}{*{20}{l}}u\\k\end{array}} \right)} {x^k}\)

\(\begin{array}{c}{\left( {1 + {x^3} + {x^6} + {x^9} + \ldots } \right)^3} = {\left( {{x^{3(0)}} + {x^{3(1)}} + {x^{3(2)}} + {x^{3(3)}} + \ldots } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^{3k}}} } \right)^3}\\ = {\left( {\sum\limits_{k = 0}^{ + \infty } {{{\left( {{x^3}} \right)}^k}} } \right)^3}\\ = {\left( {\frac{1}{{1 - {x^3}}}} \right)^3}\\ = {\left( {1 + \left( { - {x^3}} \right)} \right)^{ - 3}}\\ = \sum\limits_{k = 0}^{ + \infty } {( - 3)} {\left( { - {x^3}} \right)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {( - 3)} {( - 1)^k}{x^{3k}}\end{array}\)

02

The coefficient of \({x^9}\) is then the case \(k = 3\) :

\(\begin{array}{c}{a_{3k}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_9} = \left( {\begin{array}{*{20}{c}}{ - 3}\\3\end{array}} \right){( - 1)^3}\\ = - \frac{{( - 3)( - 4)( - 5)}}{{3!}}\\ = 10\end{array}\)

b).

03

Use Extended Binomial Theorem:

\(\begin{array}{c}{\left( {{x^2} + {x^3} + {x^4} + \ldots } \right)^3} = {\left( {{x^2}} \right)^3}{\left( {{x^0} + {x^1} + {x^2} + {x^3} + \ldots } \right)^3}\\ = {x^6} \cdot {\left( {\sum\limits_{k = 0}^{ + \infty } {{x^k}} } \right)^3}\\ = {x^6} \cdot {\left( {\frac{1}{{1 - x}}} \right)^3}\\ = {x^6} \cdot {(1 + ( - x))^{ - 3}}\\ = {x^6} \cdot \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - x)^k}\\ = \sum\limits_{k = 0}^{ + \infty } {\left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right)} {( - 1)^k}{x^{k + 6}}\end{array}\)

04

The coefficient of \({x^9}\) is then the case \(k = 3\) :

\(\begin{array}{c}{a_{k + 6}} = \left( {\begin{array}{*{20}{c}}{ - 3}\\k\end{array}} \right){( - 1)^k}\\{a_9} = \left( {\begin{array}{*{20}{c}}{ - 3}\\3\end{array}} \right){( - 1)^3}\\ = - \frac{{( - 3)( - 4)( - 5)}}{{3!}}\\ = 10\end{array}\)

c).

05

Use Extended Binomial Theorem:

\(\begin{array}{c}\left( {{x^3} + {x^5} + {x^6}} \right)\left( {{x^3} + {x^4}} \right)\left( {x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^3}\left( {1 + {x^2} + {x^3}} \right)\left( {{x^3}} \right)(1 + x)(x)\left( {1 + x + {x^2} + {x^3} + {x^4} + \ldots } \right)\\ = {x^7} \cdot \left( {1 + {x^2} + {x^3}} \right) \cdot (1 + x) \cdot \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\ = {x^7} \cdot \left( {1 + {x^2} + {x^3} + x + {x^3} + {x^4}} \right) \cdot \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\ = {x^7} \cdot \left( {1 + x + {x^2} + 2{x^3} + {x^4}} \right) \cdot \sum\limits_{k = 0}^{ + \infty } {{x^k}} \\ = {x^7} \cdot \sum\limits_{m = 0}^4 {{a_m}} {x^m} \cdot \sum\limits_{k = 0}^{ + \infty } {{b_k}} {x^k}\end{array}\)

06

The coefficient of \({x^9}\) is then the sum of the coefficients \({a_m}{b_k}\) that:

\({x^9}\)can then be obtained if\(7 + m + k = 9\). Since \(m\) and \(k\) are nonnegative integers.

\(\begin{array}{*{20}{r}}{m = 0,k = 2}\\{{\rm{ or }}m = 1,k = 1}\\{{\rm{ or }}m = 2,k = 0}\end{array}\)

The coefficient of \({x^9}\) is;

\(\begin{array}{c}{a_9} = {a_0}{b_2} + {a_1}{b_1} + {a_2}{b_0}\\ = 1 + 1 + 1\\ = 3\end{array}\)

d).

07

Use Extended Binomial Theorem:

\(\begin{array}{c}\left( {x + {x^4} + {x^7} + \ldots } \right)\left( {{x^2} + {x^4} + {x^6} + \ldots } \right) = x\left( {1 + {x^3} + {x^6} + \ldots } \right)\left( {{x^2}} \right)\left( {1 + {x^2} + {x^4} + \ldots } \right)\\ = {x^3} \cdot \sum\limits_{m = 0}^{ + \infty } {{x^{3m}}} \cdot \sum\limits_{k = 0}^{ + \infty } {{x^{2k}}} \end{array}\)

\({x^9}\)can then be obtained if\(3 + 3m + 2k = 9\). Since \(m\) and \(k\) are nonnegative integers.

\(\begin{array}{*{20}{r}}{m = 2,k = 0}\\{{\rm{ or }}m = 0,k = 3}\end{array}\)

Since the coefficient of each combination is 1 and since there are 5 combinations, the coefficient of \({x^9}\) is:

\(1 + 1 = 2\)

e).

08

The coefficient of \({x^9}\)in the function:

\(\begin{array}{c}{\left( {1 + x + {x^2}} \right)^3} = \left( {1 + x + {x^2}} \right)\left( {1 + x + {x^2} + x + {x^2} + {x^3} + {x^2} + {x^3} + {x^4}} \right)\\ = \left( {1 + x + {x^2}} \right)\left( {1 + 2x + 3{x^2} + 2{x^3} + {x^4}} \right)\\ = 1 + 2x + 3{x^2} + 2{x^3} + {x^4} + x + 2{x^2} + 3{x^3} + 2{x^4} + {x^5} + {x^2} + 2{x^3} + 3{x^4} + 2{x^5} + {x^6}\\ = {x^6} + 3{x^5} + 6{x^4} + 7{x^3} + 6{x^2} + 3x + 1\end{array}\)

We then note that the power series does not contain \({x^9}\) and thus the coefficient of \({x^9}\) having to be zero.

\({a_9} = 0\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Construct a variation of the algorithm described in Example 12 along with justifications of the steps used by the algorithm to find the smallest distance between two points if the distance between two points is defined to bed((xi,yi),(xj,yj))=max(|xi-xj|,|yi-yj|).

Let L(i,j)denote the length of a longest common subsequence ofa1,a2,....,aiandb1,b2,....,bj, where0โ‰คiโ‰คmand0โ‰คjโ‰คn.

Use parts(a)&(b)of Exercise 15to show thatL(i,j)satisfies the recurrence relation,

L(i,j)=L(i-1,j-1)

If both iandjare nonzero andai=bi,

and

L(i,j)=L(i,j-1),L(i-1,j)

If both iandjare nonzero andaiโ‰ bi, and the initial conditionL(i,j)=0,

Ifi=0

or

j=0.

Suppose that c1,c2,โ€ฆ,cpis a longest common subsequence of the sequences a1,a2,โ€ฆ,amandb1,b2,โ€ฆ,bn.
a) Show that if am=bn, then cp=am=bnand c1,c2,โ€ฆ,cp-1is a longest common subsequence of a1,a2,โ€ฆ,am-1and b1,b2,โ€ฆ,bn-1 when p>1.
b) Suppose that amโ‰ bn. Show that if cpโ‰ am, then c1,c2,โ€ฆ,cpis a longest common subsequence of a1,a2,โ€ฆ,am-1and b1,b2,โ€ฆ,bnand also show that if cpโ‰ bn, then c1,c2,โ€ฆ,cpis a longest common subsequence of a1,a2,โ€ฆ,amandb1,b2,โ€ฆ,bn-1

Use generating functions to find the number of ways to make change for \(100 using

a) \)10, \(20, and \)50 bills.

b) \(5, \)10, \(20, and \)50 bills.

c) \(5, \)10, \(20, and \)50 bills if at least one bill of each denomination is used.

d) \(5, \)10, and $20 bills if at least one and no more than four of each denomination is used.

A sequence \({a_1},{a_2},.....,{a_n}\) is unimodal if and only if there is an index \(m,1 \le m \le n,\) such that \({a_i} < {a_i} + 1\) when \(1{1 < i < m}\) and \({a_i} > {a_{i + 1}}\) when \(m \le i < n\). That is, the terms of the sequence strictly increase until the \(m\)th term and they strictly decrease after it, which implies that \({a_m}\) is the largest term. In this exercise, \({a_m}\) will always denote the largest term of the unimodal sequence \({a_1},{a_2},.....,{a_n}\).

a) Show that \({a_m}\) is the unique term of the sequence that is greater than both the term immediately preceding it and the term immediately following it.

b) Show that if \({a_i} < {a_i} + 1\) where \(1 \le i < n\), then \(i + 1 \le m \le n\).

c) Show that if \({a_i} > {a_{i + 1}}\) where \(1 \le i < n\), then \(1 \le m \le i\).

d) Develop a divide-and-conquer algorithm for locating the index \(m\). (Hint: Suppose that \(i < m < j\). Use parts (a), (b), and (c) to determine whether \(((i + j)/2) + 1 \le m \le n,\) \(1 \le m \le ((i + j)/2) - 1,\) or \(m = ((i + j)/2)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free