Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A) As \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R\) \(\Rightarrow a=2 R \sin A\) \(\Rightarrow \frac{d a}{d A}=2 R \cos A\) \(\Rightarrow \frac{d a}{\cos A}=2 R d A\) Similarly, \(\frac{d b}{\cos B}=2 R d B, \frac{d c}{\cos c}=2 R d C\) \(\quad \frac{d a}{\cos A}+\frac{d b}{\cos B}+\frac{d c}{\cos C}+1=\) \(2 R(d A+d B+d C)+1\) \(\quad A s A+B+C=\pi\) \(\Rightarrow d A+d B+d C=0\) using eq (I) \(|\mathbf{m}|=1\) B) $\begin{aligned} & \Rightarrow \mathrm{m}=\pm 1 \\ \mathrm{x}^{2} \mathrm{y}^{2}=& 16 \end{aligned}$ \(2 x^{2} y \frac{d y}{d x}+2 x y^{2}=0\) \(\frac{d y}{d x}=-\frac{y}{x}=1\) Subtangent \(=y / d y / d x=2=|\mathrm{k}|\) \(\Rightarrow \mathrm{k}=\pm 2\) C) \(y=2 e^{2 x}\) \(\frac{d y}{d x}=4 e^{2 x}=4\) for yaxis $\tan ^{-1} 4=\frac{\pi}{2}-\cot ^{-1}\left(\frac{8 n-4}{3}\right)=\tan ^{-1}\left(\frac{8 n+4}{3}\right)$ \(12=|8 n-4|\) \(\mathrm{n}=2\) or \(-1\) D) \(\mathrm{x}=\underline{\mathrm{e}^{\sin y}}\) \(1=e^{\sin y} \cos y \frac{d y}{d x}\) At \((1,0) \Rightarrow \frac{d y}{d x}=1\) eqn of Normal \(\rightarrow y=-(x-1)\) \(y+x-1=0\) Area of \(\Delta=\frac{1}{2} \times 1 \times 1=\frac{1}{2}\) \(\Rightarrow|2 t+1|=3\) \(2 t+1=\pm 3 \Rightarrow t=1\) or \(-2\) $\mathrm{A} \rightarrow(\mathrm{PQ}), \mathrm{B} \rightarrow(\mathrm{RS}), \mathrm{C} \rightarrow(\mathrm{RQ}), \mathrm{D} \rightarrow(\mathrm{PS})$

Short Answer

Expert verified
Answer: The relationship between the variables and their rates of change is given by \(|\boldsymbol{m}|=1\). The subtangent of the curve is 2. The angle between the tangent of the curve and the y-axis is given by \(\tan^{-1}(4) = \tan^{-1}\left(\frac{8n+4}{3}\right)\). The equation of the normal of the curve is \(y = -(x-1)\), and the area of the triangle is \(\frac{1}{2}\).

Step by step solution

01

Derive equations

From the given equation, we have \(a = 2R\sin A\), \(b = 2R\sin B\), and \(c = 2R\sin C\). Differentiate with respect to the angles to obtain: \(\frac{da}{dA} = 2R\cos A\), \(\frac{db}{dB} = 2R\cos B\), and \(\frac{dc}{dC} = 2R\cos C\).
02

Combine equations and obtain the result

Now we can rewrite the equations as \(\frac{d a}{\cos A}=2 R d A\), \(\frac{d b}{\cos B}=2 R d B\), and \(\frac{d c}{\cos C}=2 R d C\). Adding these equations and use the fact that \(dA + dB + dC = 0\), we get \(|\boldsymbol{m}|=1\). #Part B: Find the subtangent of a curve#
03

Write down the given equation

We have the equation \(xy^2 = 16\).
04

Differentiate the equation

Differentiate the equation with respect to \(x\) to obtain \(\frac{dy}{dx} = -\frac{y}{2x}\).
05

Find the subtangent

The subtangent is given by \(|\boldsymbol{k}| = \frac{y}{\frac{dy}{dx}} = 2\). #Part C: Angle between the tangent and y-axis#
06

Write down the given equation

We have the equation \(y = 2e^{2x}\).
07

Differentiate the equation

Differentiate the equation with respect to \(x\) to obtain \(\frac{dy}{dx} = 4e^{2x}\).
08

Find the angle

At the y-axis, substitute \(x=0\) to find \(\frac{dy}{dx} = 4\). The angle between the tangent and the y-axis is given by: \(\tan^{-1}(4) = \tan^{-1}\left(\frac{8n+4}{3}\right)\). #Part D: Equation of the normal and the area of the triangle#
09

Write down the given equation

We have the equation \(x = e^{\sin y}\).
10

Differentiate the equation

Differentiate the equation with respect to \(x\) to obtain \(\frac{dy}{dx} = \frac{1}{e^{\sin y}\cos y}\).
11

Find the equation of normal line

At \((1, 0)\), substitute the values to find \(\frac{dy}{dx} = 1\). The equation of normal line is given by: \(y = -(x-1)\).
12

Find the area of the triangle

Area of the triangle is given by \(\Delta = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}\). To find the values of \(t\), we can simply solve the equation \(|2t+1| = 3\) to obtain \(t=1\) or \(-2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=1-a x^{2}\) \(\frac{d y}{d x}=-2 a x\) \& \(\mathrm{y}=\mathrm{x}^{2}\) \(\frac{d y}{d x}=2 x\) For orthogonal \(\Rightarrow 4 a x^{2}=1\) Now, \(1-a x^{2}=x^{2}\) \(x^{2}=\frac{1}{1+a}\) Using eq (1) \(\frac{4 a}{1+a}=1\) \(a=\frac{1}{3}\)

\(\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1\) \(\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}=2 \mathrm{t}+1\) \(\mathrm{y}=\mathrm{t}^{2}-\mathrm{t}+1\) \(\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{t}-1\) \(\frac{d y}{\mathrm{~d} \mathrm{x}}=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\) $\Rightarrow \mathrm{y}-\left(\mathrm{t}^{2}-\mathrm{t}+1\right)=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\left(\mathrm{x}-\left(\mathrm{t}^{2}+\mathrm{t}+1\right)\right)$ $\Rightarrow\left(\mathrm{t}-\mathrm{t}^{2}\right)=\left(\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\right)\left(-\left(\mathrm{t}^{2}+\mathrm{t}\right)\right)$ $\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-\mathrm{t}^{2}=\mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}^{2}$ \(\Rightarrow 2 \mathrm{t}^{2}=0\) \(\Rightarrow \mathrm{t}=0\)

\(x^{2}+y^{2}-\frac{10}{3} y+1=0\) \(x^{2}+\left(y-\frac{5}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}\) \(y^{2}=x^{3}\) \(2 y y_{1}=3 x^{2}\) \(y_{1}=\frac{3 x^{2}}{2 y}\) Normal eqn \(\quad y-y_{1}=-\frac{2 y_{1}}{3 x_{1}^{2}}\left(x-x_{1}\right)\) as it passes through \(\left(0, \frac{5}{3}\right)\) \(\frac{5}{3}-y_{1}=\frac{2 y_{1}}{3 x_{1}}\) \(5-3 y_{1}=2 y^{1 / 3}\) \(5-9 y^{3}-225 y+135 y^{2}=8 y\) \(9 y^{3}+233 y-135 y^{2}-25=0\)

\(y=e^{2 x}+x^{2}\) \(\frac{d y}{d x}=2 e^{2 x}+2 x\) at \(x=0, \quad \frac{d y}{d x}=2\) \(-\frac{d x}{d y}=-\frac{1}{2}\) eqn of normal \(\rightarrow y-1=-\frac{1}{2} x\) \(\Rightarrow 2 y+x-2=0\) Distance from \((0,0)=\frac{2}{\sqrt{5}}\)

\(y^{3}=27 x\) \(3 y^{2} \frac{d y}{d x}=27 \frac{d x}{d t}\) \(\frac{3 y^{2}}{27}<1\) \(y^{2}<9 \Rightarrow y \in(-3,3)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free