Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Volume inhaled while exercising \(=\int_{0}^{4} 1.75 \sin \frac{\pi t}{2}\) dt \(=-1.75\left(\cos \frac{\pi t}{2}\right) \times \frac{2}{\pi}\) \(=\frac{7}{\pi}\) Difference \(=\frac{7}{\pi}-\frac{5.1}{\pi}\) \(=\frac{1.9}{\pi}\) Hence, B is correct Comprehension \(5:\) $\begin{aligned} x=& a(2 \cos t+\cos 2 t), \quad y=a(2 \sin t-\sin 2 t\\\ \frac{d x}{d t} &=a(-2 \sin t-2 \sin 2 t) \\\ &=-2 a[\sin t+2 \sin 2 t] \\ &=-2 a \sin t[1+2 \cos t] \\ \frac{d y}{d t} &=a[2 \cos t-2 \cos 2 t] \\ &=-2 a\left[2 \cos ^{2} t-\cos t-1\right] \\\ &=-2 a(\cos t-1)(2 \cos t+1) \end{aligned}$ $\frac{d y}{d x}=\frac{(\cos t-1)(2 \cos t+1)}{(\sin t)(1+2 \cos t)}=-\tan t / 2$ slope of normal \(=\cot t / 2 .\)

Short Answer

Expert verified
Now, we will integrate with respect to u: $$ \frac{3.5}{\pi}\int_{0}^{2\pi} \sin u \, du = \frac{3.5}{\pi}[-\cos u]_{0}^{2\pi} $$ By applying the limits: $$ \frac{3.5}{\pi}[-\cos (2\pi) + \cos (0)] = \frac{3.5}{\pi}[1 - (-1)] = \frac{3.5}{\pi}(2) $$ So, the integral value is: $$ \int_{0}^{4} 1.75 \sin \frac{\pi t}{2} \, dt = 7 $$ #Step 2: Calculate the difference Now that we have found the value of the integral to be 7, we can calculate the difference between the two given options: $$ | 7 - 5.5 | = 1.5 $$ Therefore, the difference in the volume inhaled while exercising between the given options is 1.5 liters.

Step by step solution

01

Calculate the integral value

First, we need to evaluate the given integral: $$ \int_{0}^{4} 1.75 \sin \frac{\pi t}{2} \, dt $$ Using the substitution method, let \(u = \frac{\pi t}{2}\). Thus, \(du = \frac{\pi}{2} dt\) and: $$ \int_{0}^{4} 1.75 \sin \frac{\pi t}{2} \, dt = \frac{3.5}{\pi}\int_{0}^{2\pi} \sin u \, du $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=\left(\frac{x}{2}-a\right)^{2}+a-2\) \(4(y-(a-2))=(x-2 a)^{2}\) Vertex \(\Rightarrow \mathrm{h}=2 \mathrm{a}, \mathrm{k}=\mathrm{a}-2\) Locus of vertex \(\Rightarrow \mathrm{y}=\frac{\mathrm{x}}{2}-2\) \(\Rightarrow 2 y=x-4\)

\(1^{2}=x^{2}+y^{2}\) \(1 \frac{d l}{d t}=x \frac{d x}{d t}+y \frac{d y}{d t}\) \(y=x^{3 / 2}\) \(\frac{d y}{d t}=\frac{3}{2} x^{1 / 2} \frac{d x}{d t}\) Using (1) \& (2) $11 \sqrt{x^{2}+x^{3}}=x \frac{d x}{d t}+\frac{3}{2} x^{3 / 2} x^{1 / 2} \frac{d x}{d t}$ \(\frac{d x}{d t}=\frac{66}{3+\frac{27}{2}}=\frac{66 \times 2}{33}=4\)

\(\mathrm{y}=\mathrm{x}^{2}+\mathrm{bx}-\mathrm{b}, \quad(1,1)\) lies on curve \(\frac{d y}{d x}=2 x+b=b+2\) eqn of tangent \(\Rightarrow y-1=(b+2)(x-1)\) \(x\) int \(\Rightarrow 1-\frac{1}{b+2}\) \(y\) int \(\Rightarrow 1-(b+2)\) Area of \(\Delta=\frac{1}{2} \frac{(b+1)^{2}}{(b+2)}\) \(\Rightarrow(b+1)^{2}=-4 b-8\) \(\Rightarrow b^{2}+6 b+9=0\) \((b+3)^{2}=0\) \(\Rightarrow b=-3\)

\(\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1\) \(\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}=2 \mathrm{t}+1\) \(\mathrm{y}=\mathrm{t}^{2}-\mathrm{t}+1\) \(\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{t}-1\) \(\frac{d y}{\mathrm{~d} \mathrm{x}}=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\) $\Rightarrow \mathrm{y}-\left(\mathrm{t}^{2}-\mathrm{t}+1\right)=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\left(\mathrm{x}-\left(\mathrm{t}^{2}+\mathrm{t}+1\right)\right)$ $\Rightarrow\left(\mathrm{t}-\mathrm{t}^{2}\right)=\left(\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\right)\left(-\left(\mathrm{t}^{2}+\mathrm{t}\right)\right)$ $\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-\mathrm{t}^{2}=\mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}^{2}$ \(\Rightarrow 2 \mathrm{t}^{2}=0\) \(\Rightarrow \mathrm{t}=0\)

\(y^{3}=27 x\) \(3 y^{2} \frac{d y}{d x}=27 \frac{d x}{d t}\) \(\frac{3 y^{2}}{27}<1\) \(y^{2}<9 \Rightarrow y \in(-3,3)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free