Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(f(0)<0\) \(\Rightarrow \mathrm{a}^{2}+\mathrm{a}-2<0\) \(\Rightarrow a \in(-2,1)\) Integral values of a are \(-1,0\).

Short Answer

Expert verified
Answer: The possible integral values for a that satisfy the given condition are \(a = -1\) and \(a = 0\).

Step by step solution

01

Identify critical points

To find the critical points, we first need to set the quadratic function equal to zero: \(a^2 + a - 2 = 0\). Now, we will find the roots of this equation. There are several ways to do this, and we will use the quadratic formula: \(a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a=1\), \(b=1\), and \(c=-2\).
02

Calculate the roots

Plugging the values a, b, and c into the quadratic formula, we get: \(a = \frac{-1 \pm \sqrt{1^2 - 4(1)(-2)}}{2(1)}\) \(a = \frac{-1 \pm \sqrt{1 + 8}}{2}\) \(a = \frac{-1 \pm \sqrt{9}}{2}\) \(a = \frac{-1 \pm 3}{2}\) Now, we have two possible values for a: \(a_1 = \frac{-1 + 3}{2} = \frac{2}{2} = 1\) \(a_2 = \frac{-1 - 3}{2} = \frac{-4}{2} = -2\) So the critical points are a = -2 and a = 1.
03

Identify where the function is negative

Now, we know that the quadratic function is positive between the critical points and negative outside of them. So the function will be negative if \(a<-2\) or \(a>1\). However, we need the condition \(f(0)<0\). Since the function is negative outside the critical points, \(f(0)<0\) will only be satisfied when \(a\) is between the critical points: \(a \in (-2, 1)\).
04

Determine integral values of a

Now, we need to find the integral values of a in the interval \((-2, 1)\). Based on the interval, the integral values in this range are -1 and 0. So, the possible integral values of a that satisfy \(f(0)<0\) are \(a = -1\) and \(a = 0\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=\frac{x^{2}}{4}-3 x+10\) For \(y=2-\frac{x^{2}}{4}\) eqn of tangent \(y-2=m x+m^{2}\) Solving (II) \& (I) \(m x+2+m^{2}=\frac{x^{2}}{4}-3 x+10\) \(\Rightarrow \frac{x^{2}}{4}-(m+3) x+\left(8-m^{2}\right)=0\) \(\mathrm{D}=0\) \((m+3)^{2}-\left(8-m^{2}\right)=0\) \(2 m^{2}+6 m+1=0\) \(\mathrm{m}_{1}+\mathrm{m}_{2}=-3\)

slope of normal \(\Rightarrow 3 x-y+3=0\) $$ x=0 \& y=3 $$ Pt of normal \(=(0,3)\) \(\frac{d y}{d x}=\frac{-1}{3}=f^{\prime}(0)\) $\lim _{x \rightarrow 0} \frac{x^{2}}{f\left(x^{2}\right)+4 f\left(7 x^{2}\right)-5 f\left(4 x^{2}\right)}$ $\lim _{x \rightarrow 0} \frac{2 x}{x\left[2 f^{\prime}\left(x^{2}\right)+56 f^{\prime}\left(7 x^{2}\right)-40 f^{\prime}\left(4 x^{2}\right)\right]}$ \(=\frac{2}{-6}=\frac{-1}{3}\)

At exercise, respiratory cycle has a period of 4 . Hence difference in frequency is \(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)

Slope of secant \(=\frac{9 a^{2}-a^{2}}{3 a-a}=4 a\) \(\frac{d y}{d x}=2 x=4 a\) \(x=2 a\) \(y=4 a^{2}\)

Let \(\mathrm{P}\) be \(\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)\) \(y^{2}=4 x\) \(2 y \frac{d y}{d x}=4\) \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{t}}\) If \(Q\) is a pt where normal meets the parabola again wit \(\mathrm{t}_{1}\) as parameter \(\mathrm{t}_{1}=-\mathrm{t}-\frac{2}{\mathrm{t}}\) Coordinate of $Q \rightarrow\left(\left(t+\frac{2}{t}\right)^{2},-2 t-\frac{4}{t}\right)$ Distance \(=\sqrt{\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{4}+4\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{2}}\) Distance $=\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right) \sqrt{\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{2}+4}$ Min Distance \(=2 \sqrt{2} \sqrt{12}=4 \sqrt{6}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free