Chapter 5: Problem 84
\(f(0)<0\) \(\Rightarrow \mathrm{a}^{2}+\mathrm{a}-2<0\) \(\Rightarrow a \in(-2,1)\) Integral values of a are \(-1,0\).
Chapter 5: Problem 84
\(f(0)<0\) \(\Rightarrow \mathrm{a}^{2}+\mathrm{a}-2<0\) \(\Rightarrow a \in(-2,1)\) Integral values of a are \(-1,0\).
All the tools & learning materials you need for study success - in one app.
Get started for free\(y=\frac{x^{2}}{4}-3 x+10\) For \(y=2-\frac{x^{2}}{4}\) eqn of tangent \(y-2=m x+m^{2}\) Solving (II) \& (I) \(m x+2+m^{2}=\frac{x^{2}}{4}-3 x+10\) \(\Rightarrow \frac{x^{2}}{4}-(m+3) x+\left(8-m^{2}\right)=0\) \(\mathrm{D}=0\) \((m+3)^{2}-\left(8-m^{2}\right)=0\) \(2 m^{2}+6 m+1=0\) \(\mathrm{m}_{1}+\mathrm{m}_{2}=-3\)
slope of normal \(\Rightarrow 3 x-y+3=0\) $$ x=0 \& y=3 $$ Pt of normal \(=(0,3)\) \(\frac{d y}{d x}=\frac{-1}{3}=f^{\prime}(0)\) $\lim _{x \rightarrow 0} \frac{x^{2}}{f\left(x^{2}\right)+4 f\left(7 x^{2}\right)-5 f\left(4 x^{2}\right)}$ $\lim _{x \rightarrow 0} \frac{2 x}{x\left[2 f^{\prime}\left(x^{2}\right)+56 f^{\prime}\left(7 x^{2}\right)-40 f^{\prime}\left(4 x^{2}\right)\right]}$ \(=\frac{2}{-6}=\frac{-1}{3}\)
At exercise, respiratory cycle has a period of 4 . Hence difference in frequency is \(\frac{1}{4}-\frac{1}{6}=\frac{1}{12}\)
Slope of secant \(=\frac{9 a^{2}-a^{2}}{3 a-a}=4 a\) \(\frac{d y}{d x}=2 x=4 a\) \(x=2 a\) \(y=4 a^{2}\)
Let \(\mathrm{P}\) be \(\left(\mathrm{t}^{2}, 2 \mathrm{t}\right)\) \(y^{2}=4 x\) \(2 y \frac{d y}{d x}=4\) \(\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\mathrm{t}}\) If \(Q\) is a pt where normal meets the parabola again wit \(\mathrm{t}_{1}\) as parameter \(\mathrm{t}_{1}=-\mathrm{t}-\frac{2}{\mathrm{t}}\) Coordinate of $Q \rightarrow\left(\left(t+\frac{2}{t}\right)^{2},-2 t-\frac{4}{t}\right)$ Distance \(=\sqrt{\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{4}+4\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{2}}\) Distance $=\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right) \sqrt{\left(\mathrm{t}+\frac{2}{\mathrm{t}}\right)^{2}+4}$ Min Distance \(=2 \sqrt{2} \sqrt{12}=4 \sqrt{6}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.