Chapter 5: Problem 83
$\mathrm{S}=30\left(1-\mathrm{e}^{(\ln 5 / 6) 5}\right)=30\left(1-\left(\frac{5}{6}\right)^{5}\right)$
Chapter 5: Problem 83
$\mathrm{S}=30\left(1-\mathrm{e}^{(\ln 5 / 6) 5}\right)=30\left(1-\left(\frac{5}{6}\right)^{5}\right)$
All the tools & learning materials you need for study success - in one app.
Get started for free\(f(0)<0\) \(\Rightarrow \mathrm{a}^{2}+\mathrm{a}-2<0\) \(\Rightarrow a \in(-2,1)\) Integral values of a are \(-1,0\).
\(x \sin y+y \sin x=\pi\) \(\sin y+x \cos y \frac{d y}{d x}+\frac{d y}{d x} \sin x+y \cos x=0\) \(\frac{d y}{d x}=\frac{-(\sin y+y \cos x)}{x \cos y+\sin x}=-1\) eqn of tangent \(\rightarrow y=-x+\pi\)
\(y^{2}-2 x^{2}-4 y+8=0\) \(2 y \frac{d y}{d x}-4 x-4 \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{2 x}{y-2}\) Now, \(y^{2}-2 x^{2}-4 y+8=0\) \((y-2)^{2}-2\left(x^{2}-2\right)=0\) eqn of tangent \(y-y_{1}=\frac{2 x_{1}}{y_{1}-2}\left(x-x_{1}\right)\) \(-\left(2-y_{1}\right)^{2}=2 x_{1}\left(1-x_{1}\right)\) Using (II) \(-2\left(x_{1}^{2}-2\right)=2 x_{1}-2 x_{1}^{2}\) \(2 \mathrm{x}_{1}=4\) \(\mathrm{x}_{1}=2\) \& \(\mathrm{x}_{1}=0\) (Horizontal tangent)
\(y^{2}=x\left(2-x^{2}\right)\) \(2 y \frac{d y}{d x}=2-3 x^{2}\) \(\frac{d y}{d x}=\frac{-1}{2} \quad\) at \((1,1)\) eqn of tangent \(y-1=\frac{-1}{2}(x-1)\) \(2 y+x-3=0\) Solving with curve \(\left(\frac{3-x}{2}\right)^{2}=2 x-x^{3}\) \(4 x^{3}+x^{2}-14 x+9=0\)
\((x-4)^{2}+y^{2}=c^{2}\) \(2(x-4)+2 y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{4-x}{y}\) For \(y^{2}=x^{3}+1\) \(2 y \frac{d y}{d x}=3 x^{2}\) \(\frac{d y}{d x}=\frac{3 x^{2}}{2 y}\) \(\Rightarrow \frac{4-x}{y}=\frac{3 x^{2}}{2 y}\) \(\Rightarrow 3 x^{2}+2 x-8=0\) \(\Rightarrow(3 x-4)(x+2)=0\) \(x=\frac{4}{3}\) or \(-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.