Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\mathrm{s}=30\left(1-\mathrm{e}^{\mathrm{ln}}\right)\) \(5=30\left(\mathrm{l}-\mathrm{e}^{k}\right)\) \(\mathrm{e}^{k}=\frac{5}{6}\) \(\mathrm{k}=\ln (5 / 6)\)

Short Answer

Expert verified
#tag_title# Step 7: Summarize the solution #tag_content# We have solved the given equations and found the variables as follows: \(s = 30(1 - A)\) \(\mathrm{l} = 1\) \(k = \ln \left(\frac{5}{6}\right)\) These are the values of the variables for the given system of equations.

Step by step solution

01

Rewrite the first equation

Rewrite the equation \(s = 30\left(1-\mathrm{e}^{\mathrm{ln}}\right)\) as \(s = 30(1 - e^{\ln{A}})\).
02

Simplify using logarithmic properties

Recall the property of logarithms: \(e^{\ln{A}} = A\). Using this property, we can simplify the first equation: \(s = 30(1 - A)\)
03

Address the other system of equations

Now, let's focus on the system of equations: \(5 = 30\left(\mathrm{l}-\mathrm{e}^{k}\right)\) \(\mathrm{e}^{k} = \frac{5}{6}\) \(\mathrm{k} = \ln (5 / 6)\)
04

Solve for \(k\)

The third equation shows that \(e^k = \frac{5}{6}\). The fourth equation has \(k\) expressed as a logarithm. So the fourth equation gives us: \(k = \ln \left(\frac{5}{6}\right)\)
05

Connect \(k\) and the first system of equations

Since we have found \(k\) in terms of a logarithm, we can substitute the value of \(k\) into the second equation: \(5 = 30\left(\mathrm{l}-\mathrm{e}^{\ln \left(\frac{5}{6}\right)}\right)\) Then, using the property of logarithms we used in step 2, we get: \(5 = 30\left(\mathrm{l} - \frac{5}{6}\right)\)
06

Solve for \(\mathrm{l}\)

Now, we just need to solve for the variable \(\mathrm{l}\): \(5 = 30\left(\mathrm{l}-\frac{5}{6}\right)\) \(\frac{5}{30} = \mathrm{l}-\frac{5}{6}\) \(\frac{1}{6} = \mathrm{l}-\frac{5}{6}\) \(\mathrm{l} = \frac{1}{6}+\frac{5}{6} = 1\) So, we have found the variable \(\mathrm{l} = 1\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(y=m x+\frac{1}{m}\) be tangent to \(y^{2}=4 x\) eqn of normal at \(\left(x_{1}, y_{1}\right)\) to \(x^{2}=4\) by is \(y-y_{1}=-\frac{2 b}{x_{1}}\left(x-x_{1}\right)\) \(\Rightarrow y=-\frac{2 b}{x_{1}} x+\frac{x_{1}^{2}}{4 b}+2 b\) Comparing two eqn \(\mathrm{m}=-\frac{2 \mathrm{~b}}{\mathrm{x}_{1}}\) \(\frac{\mathrm{x}_{1}^{2}}{4 \mathrm{~b}}+2 \mathrm{~b}=\frac{1}{\mathrm{~m}}\) Using (I) \& (II)

\(x=t^{2}+t+1\) \(\frac{d x}{d t}=2 t+1\) \(y=t^{2}-t+1\) \(\frac{d y}{d t}=2 t-1\) \(\frac{d y}{d x}=\frac{2 t-1}{2 t+1}\) $\Rightarrow y-\left(t^{2}-t+1\right)=\frac{2 t-1}{2 t+1}\left(x-\left(t^{2}+t+1\right)\right)$ $\Rightarrow\left(t-t^{2}\right)=\left(\frac{2 t-1}{2 t+1}\right)\left(-\left(t^{2}+t\right)\right)$ \(\Rightarrow 2 t^{2}+t-2 t^{3}-t^{2}=t^{2}+t-2 t^{3}-2 t^{2}\) \(\Rightarrow 2 t^{2}=0\) \(\Rightarrow t=0\)

\(y=1-a x^{2}\) \(\frac{d y}{d x}=-2 a x_{1}\) \& \(y=x^{2}\) \(\frac{d y}{d x}=2 x_{1}\) If curves are orthogonal, \(\mathrm{m}_{1} \mathrm{~m}_{2}=-1\) \(+4 a x^{2}=1\) Now \(1-a x^{2}=x^{2} \Rightarrow \frac{1}{1+a}=x^{2}\) Using eq (1), we get \(\frac{4 a}{1+a}=1\) \(\mathrm{a}=\frac{1}{3}\)

\(x=2-3 \sin \theta, \quad y=3+2 \cos \theta\) \(\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y-3}{2}\right)^{2}=1 \Rightarrow\) eqn of ellipse end pts of major axis \(\rightarrow(-1,3) \&(5,3)\)

\(\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-1}{2-\mathrm{x}}=-1+\frac{1}{2-\mathrm{x}}\) \(\mathrm{f}^{\prime}(\mathrm{x})=+\frac{1}{(2-\mathrm{x})^{2}}=\frac{\mathrm{t}}{4}\) \(\Rightarrow \quad \mathrm{x}-2=\pm 2\) \(\mathrm{x}=0\) or 4 $\mathrm{Pt} \rightarrow\left(0, \frac{-1}{2}\right), \quad \&\left(4, \frac{-3}{2}\right)$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free