Chapter 5: Problem 81
\(\mathrm{s}=30\left(1-\mathrm{e}^{\mathrm{ln}}\right)\) \(5=30\left(\mathrm{l}-\mathrm{e}^{k}\right)\) \(\mathrm{e}^{k}=\frac{5}{6}\) \(\mathrm{k}=\ln (5 / 6)\)
Chapter 5: Problem 81
\(\mathrm{s}=30\left(1-\mathrm{e}^{\mathrm{ln}}\right)\) \(5=30\left(\mathrm{l}-\mathrm{e}^{k}\right)\) \(\mathrm{e}^{k}=\frac{5}{6}\) \(\mathrm{k}=\ln (5 / 6)\)
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(y=m x+\frac{1}{m}\) be tangent to \(y^{2}=4 x\) eqn of normal at \(\left(x_{1}, y_{1}\right)\) to \(x^{2}=4\) by is \(y-y_{1}=-\frac{2 b}{x_{1}}\left(x-x_{1}\right)\) \(\Rightarrow y=-\frac{2 b}{x_{1}} x+\frac{x_{1}^{2}}{4 b}+2 b\) Comparing two eqn \(\mathrm{m}=-\frac{2 \mathrm{~b}}{\mathrm{x}_{1}}\) \(\frac{\mathrm{x}_{1}^{2}}{4 \mathrm{~b}}+2 \mathrm{~b}=\frac{1}{\mathrm{~m}}\) Using (I) \& (II)
\(x=t^{2}+t+1\) \(\frac{d x}{d t}=2 t+1\) \(y=t^{2}-t+1\) \(\frac{d y}{d t}=2 t-1\) \(\frac{d y}{d x}=\frac{2 t-1}{2 t+1}\) $\Rightarrow y-\left(t^{2}-t+1\right)=\frac{2 t-1}{2 t+1}\left(x-\left(t^{2}+t+1\right)\right)$ $\Rightarrow\left(t-t^{2}\right)=\left(\frac{2 t-1}{2 t+1}\right)\left(-\left(t^{2}+t\right)\right)$ \(\Rightarrow 2 t^{2}+t-2 t^{3}-t^{2}=t^{2}+t-2 t^{3}-2 t^{2}\) \(\Rightarrow 2 t^{2}=0\) \(\Rightarrow t=0\)
\(y=1-a x^{2}\) \(\frac{d y}{d x}=-2 a x_{1}\) \& \(y=x^{2}\) \(\frac{d y}{d x}=2 x_{1}\) If curves are orthogonal, \(\mathrm{m}_{1} \mathrm{~m}_{2}=-1\) \(+4 a x^{2}=1\) Now \(1-a x^{2}=x^{2} \Rightarrow \frac{1}{1+a}=x^{2}\) Using eq (1), we get \(\frac{4 a}{1+a}=1\) \(\mathrm{a}=\frac{1}{3}\)
\(x=2-3 \sin \theta, \quad y=3+2 \cos \theta\) \(\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y-3}{2}\right)^{2}=1 \Rightarrow\) eqn of ellipse end pts of major axis \(\rightarrow(-1,3) \&(5,3)\)
\(\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}-1}{2-\mathrm{x}}=-1+\frac{1}{2-\mathrm{x}}\) \(\mathrm{f}^{\prime}(\mathrm{x})=+\frac{1}{(2-\mathrm{x})^{2}}=\frac{\mathrm{t}}{4}\) \(\Rightarrow \quad \mathrm{x}-2=\pm 2\) \(\mathrm{x}=0\) or 4 $\mathrm{Pt} \rightarrow\left(0, \frac{-1}{2}\right), \quad \&\left(4, \frac{-3}{2}\right)$
What do you think about this solution?
We value your feedback to improve our textbook solutions.