Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(f(x)=\frac{x}{1-x^{2}}\) $f^{\prime}(x)=\frac{\left(1-x^{2}\right)-x(-2 x)}{\left(1-x^{2}\right)^{2}}=\frac{1+x^{2}}{\left(1-x^{2}\right)^{2}}=1$ \(1+x^{2}=1+x^{4}-2 x^{2}\) \(\Rightarrow \quad x^{2}\left(x^{2}-3\right)=0\) \(\Rightarrow x=0, \pm \sqrt{3}\) $P t \rightarrow(0,0),\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$

Short Answer

Expert verified
Solution: The tangent line is horizontal at the points: $$(0,0),\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right),\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$$

Step by step solution

01

Find the derivative \(f^{\prime}(x)\).

To find the derivative of the function, we need to use the quotient rule: $$(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$$ Here, \(u=x\) and \(v=1-x^2\). Thus, we have $$u' = \frac{d(x)}{dx} = 1$$ $$v' = \frac{d(1-x^{2})}{dx}=-2x$$ Now we can apply the quotient rule to find the derivative: $$f^{\prime}(x) = \frac{u'v - uv'}{v^2} = \frac{(1)(1-x^2) - x(-2x)}{(1-x^2)^2}$$
02

Set \(f^{\prime}(x)=1\) and solve for \(x\).

As mentioned in the analysis, we want to find the points where the tangent is horizontal, i.e., \(f^{\prime}(x)=1\). So, we set the derivative equal to \(1\) and solve for \(x\): $$\frac{1+x^2}{(1-x^2)^2} = 1$$ $$1+x^2=1+x^4-2x^2$$ $$\Rightarrow x^2(x^2-3)=0$$ $$\Rightarrow x=0, \pm\sqrt{3}$$
03

Calculate the corresponding \(y\)-values.

Now, we need to find the corresponding \(y\)-values for each value of \(x\). We plug each \(x\) value back into the original function: $$f(0) = \frac{0}{1 - 0^2} = 0$$ $$f(\sqrt{3}) = \frac{\sqrt{3}}{1 - (\sqrt{3})^2} = \frac{\sqrt{3}}{1 - 3} = \frac{\sqrt{3}}{2}$$ $$f(-\sqrt{3}) = \frac{-\sqrt{3}}{1 - (-\sqrt{3})^2} = \frac{-\sqrt{3}}{1 - 3} = \frac{\sqrt{3}}{2}$$
04

Write down the points in the form of a tuple \((x,y)\).

Now we write down the points on the curve with horizontal tangent lines: $$(0,0),\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right),\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=2 x^{2}-x, \quad y=2-x^{3}\) Pt of intersection are \(2 \mathrm{x}^{2}-\mathrm{x}=2-\mathrm{x}^{3}\) \(\Rightarrow 2\left(x^{2}-1\right)+x\left(x^{2}-1\right)=0\) \(\Rightarrow\left(x^{2}-1\right)(x+2)=0\) \(\Rightarrow x=\pm 1,-2\) \(\Rightarrow(1,1),(-1,3),(-2,10)\) For \(\mathrm{y}=2 \mathrm{x}^{2}-\mathrm{x}\) \(\frac{d y}{d x}=4 x-1\) For \(y=2-x^{3}\) \(\frac{d y}{d x}=-3 x^{2}\) At \((1,1)\) $\theta=\tan ^{-1}\left(\frac{3+3}{1-9}\right)=\tan ^{-1}\left(\frac{3}{-4}\right)$ At \((-1,3)\) $\theta=\tan ^{-1}\left(\frac{-5+3}{1+15}\right)=\tan ^{-1}\left(\frac{1}{8}\right)$ At \((-2 ; 10)\) \(\theta=\tan ^{-1}\left(\frac{-9+12}{1+108}\right)=\tan ^{-1} \frac{3}{109}\)

A) As \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R\) \(\Rightarrow a=2 R \sin A\) \(\Rightarrow \frac{d a}{d A}=2 R \cos A\) \(\Rightarrow \frac{d a}{\cos A}=2 R d A\) Similarly, \(\frac{d b}{\cos B}=2 R d B, \frac{d c}{\cos c}=2 R d C\) \(\quad \frac{d a}{\cos A}+\frac{d b}{\cos B}+\frac{d c}{\cos C}+1=\) \(2 R(d A+d B+d C)+1\) \(\quad A s A+B+C=\pi\) \(\Rightarrow d A+d B+d C=0\) using eq (I) \(|\mathbf{m}|=1\) B) $\begin{aligned} & \Rightarrow \mathrm{m}=\pm 1 \\ \mathrm{x}^{2} \mathrm{y}^{2}=& 16 \end{aligned}$ \(2 x^{2} y \frac{d y}{d x}+2 x y^{2}=0\) \(\frac{d y}{d x}=-\frac{y}{x}=1\) Subtangent \(=y / d y / d x=2=|\mathrm{k}|\) \(\Rightarrow \mathrm{k}=\pm 2\) C) \(y=2 e^{2 x}\) \(\frac{d y}{d x}=4 e^{2 x}=4\) for yaxis $\tan ^{-1} 4=\frac{\pi}{2}-\cot ^{-1}\left(\frac{8 n-4}{3}\right)=\tan ^{-1}\left(\frac{8 n+4}{3}\right)$ \(12=|8 n-4|\) \(\mathrm{n}=2\) or \(-1\) D) \(\mathrm{x}=\underline{\mathrm{e}^{\sin y}}\) \(1=e^{\sin y} \cos y \frac{d y}{d x}\) At \((1,0) \Rightarrow \frac{d y}{d x}=1\) eqn of Normal \(\rightarrow y=-(x-1)\) \(y+x-1=0\) Area of \(\Delta=\frac{1}{2} \times 1 \times 1=\frac{1}{2}\) \(\Rightarrow|2 t+1|=3\) \(2 t+1=\pm 3 \Rightarrow t=1\) or \(-2\) $\mathrm{A} \rightarrow(\mathrm{PQ}), \mathrm{B} \rightarrow(\mathrm{RS}), \mathrm{C} \rightarrow(\mathrm{RQ}), \mathrm{D} \rightarrow(\mathrm{PS})$

\(x=2-3 \sin \theta, \quad y=3+2 \cos \theta\) \(\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y-3}{2}\right)^{2}=1 \Rightarrow\) eqn of ellipse end pts of major axis \(\rightarrow(-1,3) \&(5,3)\)

If \(\mathrm{y}=-2\) is a tangent \(\Rightarrow \mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}+2=0 \quad\) will have only one real root \(\Rightarrow \mathrm{q}^{2}-4 \mathrm{p}(\mathrm{r}+2)=0\) \(=\mathrm{q}^{2}-4 \mathrm{pr}-8 \mathrm{p}=0\) \(\Rightarrow \mathrm{p}<0\) as \(\left(\mathrm{q}^{2}-4 \mathrm{pr}<0\right)\) \(\Rightarrow \mathrm{r}<0\)

Volume inhaled while exercising \(=\int_{0}^{4} 1.75 \sin \frac{\pi t}{2}\) dt \(=-1.75\left(\cos \frac{\pi t}{2}\right) \times \frac{2}{\pi}\) \(=\frac{7}{\pi}\) Difference \(=\frac{7}{\pi}-\frac{5.1}{\pi}\) \(=\frac{1.9}{\pi}\) Hence, B is correct Comprehension \(5:\) $\begin{aligned} x=& a(2 \cos t+\cos 2 t), \quad y=a(2 \sin t-\sin 2 t\\\ \frac{d x}{d t} &=a(-2 \sin t-2 \sin 2 t) \\\ &=-2 a[\sin t+2 \sin 2 t] \\ &=-2 a \sin t[1+2 \cos t] \\ \frac{d y}{d t} &=a[2 \cos t-2 \cos 2 t] \\ &=-2 a\left[2 \cos ^{2} t-\cos t-1\right] \\\ &=-2 a(\cos t-1)(2 \cos t+1) \end{aligned}$ $\frac{d y}{d x}=\frac{(\cos t-1)(2 \cos t+1)}{(\sin t)(1+2 \cos t)}=-\tan t / 2$ slope of normal \(=\cot t / 2 .\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free