Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(x^{2}+2 x y+2 y^{2}=45\) \(x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-(x+y)}{x+2 y}=-2\) \(\Rightarrow x+y=2 x+4 y\) \(\Rightarrow x+3 y=0\) Put eq (II) in eq (I) \(9 y^{2}-6 y^{2}+2 y^{2}=45\) \(y=\pm 3\) \(x=\pm 9\) Pt \(\rightarrow(9,-3), \quad(-9,3)\)

Short Answer

Expert verified
Answer: The two points on the curve are (9, -3) and (-9, 3).

Step by step solution

01

Use the given derivative to find an additional equation

We have the expression for the derivative of y with respect to x: \(\frac{d y}{d x}=\frac{-(x+y)}{x+2 y}=-2\) We need to solve this equation to find an equation relating x and y. By cross-multiplication, we get: \(-2(x+2y) = -(x+y)\) This simplifies to: \(x+3y=0\) (Equation II)
02

Substitute Equation II into Equation I

Now, we have two equations for x and y: Equation I: \(x^{2}+2 x y+2 y^{2}=45\) Equation II: \(x+3y=0\) We can substitute Equation II into Equation I, replacing x with \(-3y\): \((-3y)^2 + 2(-3y)y + 2y^2 = 45\)
03

Solve for y

Now we solve the quadratic equation we obtained in step 2: \(9y^2 - 6y^2 + 2y^2 = 45\) \(5y^2 = 45\) \(y^2 = 9\) \(y = \pm 3\)
04

Solve for x

We have found that \(y=\pm 3\). We can now use Equation II (x+3y=0) to solve for x: For \(y=3\): \(x+3(3)=0\) \(x= -9\) For \(y=-3\): \(x+3(-3)=0\) \(x=9\)
05

Combine results

We have found that: x = -9, y = 3 or x = 9, y = -3 Therefore, the two points on the curve where the derivative is equal to -2 are: (9,-3) and (-9,3).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(y=\frac{a x}{1+x}=a-\frac{a}{1+x}\) \(\frac{d y}{d x}=\frac{a}{(1+x)^{2}}=-1\) \(a=-\left(1+x_{1}\right)^{2}\) eqn of tangent \(y-\frac{a x_{1}}{1+x_{1}}=-1\left(x-x_{1}\right)\) \(\mathrm{y}+\mathrm{x}=\mathrm{x}_{1}+\frac{\mathrm{ax}_{1}}{1+\mathrm{x}_{1}}\) \& \(y-3=-x \Rightarrow y+x=3\) \(\Rightarrow \mathrm{x}_{1}+\frac{\mathrm{ax}_{1}}{1+\mathrm{x}_{1}}=3\) \(\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{1}\left(1+\mathrm{x}_{1}\right)=3\)

\(y^{3}=27 x\) \(3 y^{2} \frac{d y}{d x}=27 \frac{d x}{d t}\) \(\frac{3 y^{2}}{27}<1\) \(y^{2}<9 \Rightarrow y \in(-3,3)\)

\(x^{4}+y^{4}=a^{4}\) \(x^{3}+y^{3} \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-x^{3}}{y^{3}}\) eqn of tangent \(\rightarrow\) \(\mathrm{y}-\mathrm{y}_{1}=-\frac{\mathrm{x}_{1}^{3}}{\mathrm{y}_{1}^{3}}\left(\mathrm{x}-\mathrm{x}_{1}\right)\) \(\mathrm{p}=\frac{\mathrm{y}_{1}^{4}}{\mathrm{x}_{1}^{3}}+\mathrm{x}_{1}=\frac{\mathrm{x}_{1}^{4}+\mathrm{y}_{1}^{4}}{\mathrm{x}_{1}^{3}}=\frac{\mathrm{a}^{4}}{\mathrm{x}_{1}^{3}}\) \(\mathrm{q}=\mathrm{y}_{1}+\frac{\mathrm{x}_{1}^{4}}{\mathrm{y}_{1}^{3}}=\frac{\mathrm{a}^{4}}{\mathrm{y}_{1}^{3}}\) Now, \(\mathrm{p}^{-4 / 3}+\mathrm{q}^{-4 / 3}=\mathrm{a}^{-4 / 3}\)

\(\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1\) \(\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}=2 \mathrm{t}+1\) \(\mathrm{y}=\mathrm{t}^{2}-\mathrm{t}+1\) \(\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{t}-1\) \(\frac{d y}{\mathrm{~d} \mathrm{x}}=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\) $\Rightarrow \mathrm{y}-\left(\mathrm{t}^{2}-\mathrm{t}+1\right)=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\left(\mathrm{x}-\left(\mathrm{t}^{2}+\mathrm{t}+1\right)\right)$ $\Rightarrow\left(\mathrm{t}-\mathrm{t}^{2}\right)=\left(\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\right)\left(-\left(\mathrm{t}^{2}+\mathrm{t}\right)\right)$ $\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-\mathrm{t}^{2}=\mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}^{2}$ \(\Rightarrow 2 \mathrm{t}^{2}=0\) \(\Rightarrow \mathrm{t}=0\)

\(y=\ln x\) \(\frac{d y}{d x}=\frac{1}{x}\) Slope of normal \(\Rightarrow-x_{1}\) Slope of 1 chord \(=\frac{1}{e-1}\) \(\Rightarrow \frac{x_{1}}{e-1}=1\) \(\Rightarrow \quad x_{1}=e-1\) \(y_{1}=\ln (e-1)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free