Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(\frac{d h_{4}}{d t}=0.5 t+2\) Integrating \(=\frac{t^{2}}{4}+2 t+5\) \(\frac{d h_{b}}{d t}=t+1\) Integrating, \(h_{b}=\frac{t^{2}}{2}+t+5\)

Short Answer

Expert verified
Answer: The original functions are \(h_{4}(t) = \frac{t^2}{4}+2t+C_{1}\) and \(h_{b}(t) = \frac{t^2}{2}+t+C_{2}\), where \(C_{1}\) and \(C_{2}\) are constants of integration.

Step by step solution

01

Integrate \(\frac{dh_{4}}{dt}\) with respect to \(t\)

We are given \(\frac{dh_{4}}{dt}=0.5t+2\) and its integral, \(h_{4}(t)=\frac{t^2}{4}+2t+C_{1}\). Note that constant of integration, \(C_{1}\), has been added to the integral. #Step 2: Integrate the first derivative of \(h_{b}(t)\)#
02

Integrate \(\frac{dh_{b}}{dt}\) with respect to \(t\)

We are given \(\frac{dh_{b}}{dt}=t+1\). To find \(h_{b}(t)\), we need to integrate this expression with respect to \(t\). We obtain \(h_{b}(t)=\int(t+1)dt = \frac{t^{2}}{2}+t+C_{2}\), where \(C_{2}\) is the constant of integration. #Step 3: Write down the functions \(h_{4}(t)\) and \(h_{b}(t)\)#
03

State the final expressions for \(h_{4}(t)\) and \(h_{b}(t)\)

Utilizing the integrals obtained in Steps 1 and 2, the original functions are: - \(h_{4}(t) = \frac{t^2}{4}+2t+C_{1}\) - \(h_{b}(t) = \frac{t^2}{2}+t+C_{2}\) However, since the constant terms \(C_{1}\) and \(C_{2}\) cannot be determined without further information, this is the most simplified form of the original functions that we can provide.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\mathrm{y}=\mathrm{x}^{2}+\mathrm{bx}-\mathrm{b}, \quad(1,1)\) lies on curve \(\frac{d y}{d x}=2 x+b=b+2\) eqn of tangent \(\Rightarrow y-1=(b+2)(x-1)\) \(x\) int \(\Rightarrow 1-\frac{1}{b+2}\) \(y\) int \(\Rightarrow 1-(b+2)\) Area of \(\Delta=\frac{1}{2} \frac{(b+1)^{2}}{(b+2)}\) \(\Rightarrow(b+1)^{2}=-4 b-8\) \(\Rightarrow b^{2}+6 b+9=0\) \((b+3)^{2}=0\) \(\Rightarrow b=-3\)

Ellipse \(\rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1\) \(\Rightarrow \frac{x}{8} \frac{d x}{d t}+\frac{2 y}{9} \frac{d y}{d t}=1\) $\Rightarrow \frac{4 \sqrt{1-y^{2} / 9}}{8} \frac{d x}{d t}+\frac{2 y}{9} \times \frac{d y}{d x} \times \frac{d x}{d t}=1$ Now put \(\frac{d y}{d x}=1 \quad \& \quad y=1\) $\Rightarrow \frac{4}{6 \sqrt{2}} \frac{d x}{d t}+\frac{2}{9} \frac{d x}{d t}=1$ \(\Rightarrow \frac{d x}{d t}\left(\frac{\sqrt{2}}{3}+\frac{2}{9}\right)=1\) \(\Rightarrow \frac{d x}{d t}=\frac{9}{3 \sqrt{2}+2}\)

\(x^{2}+2 x y+2 y^{2}=45\) \(x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-(x+y)}{x+2 y}=-2\) \(\Rightarrow x+y=2 x+4 y\) \(\Rightarrow x+3 y=0\) Put eq (II) in eq (I) \(9 y^{2}-6 y^{2}+2 y^{2}=45\) \(y=\pm 3\) \(x=\pm 9\) Pt \(\rightarrow(9,-3), \quad(-9,3)\)

\(y=1-a x^{2}\) \(\frac{d y}{d x}=-2 a x_{1}\) \& \(y=x^{2}\) \(\frac{d y}{d x}=2 x_{1}\) If curves are orthogonal, \(\mathrm{m}_{1} \mathrm{~m}_{2}=-1\) \(+4 a x^{2}=1\) Now \(1-a x^{2}=x^{2} \Rightarrow \frac{1}{1+a}=x^{2}\) Using eq (1), we get \(\frac{4 a}{1+a}=1\) \(\mathrm{a}=\frac{1}{3}\)

\(\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1\) \(\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}=2 \mathrm{t}+1\) \(\mathrm{y}=\mathrm{t}^{2}-\mathrm{t}+1\) \(\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{t}-1\) \(\frac{d y}{\mathrm{~d} \mathrm{x}}=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\) $\Rightarrow \mathrm{y}-\left(\mathrm{t}^{2}-\mathrm{t}+1\right)=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\left(\mathrm{x}-\left(\mathrm{t}^{2}+\mathrm{t}+1\right)\right)$ $\Rightarrow\left(\mathrm{t}-\mathrm{t}^{2}\right)=\left(\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\right)\left(-\left(\mathrm{t}^{2}+\mathrm{t}\right)\right)$ $\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-\mathrm{t}^{2}=\mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}^{2}$ \(\Rightarrow 2 \mathrm{t}^{2}=0\) \(\Rightarrow \mathrm{t}=0\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free