Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(x y^{2}=1\) \(y^{2}+2 x y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-y}{2 x}\) \(-\frac{d x}{d y}=\frac{2 x}{y}=\frac{2}{y^{3}}\) \(y-y_{1}=\frac{2}{y_{1}^{3}}\left(x-x_{1}\right)\) \(+y_{1}^{4}=2 x_{1}\) \(y_{1}^{6}=2\) \(y_{1}=\pm 2^{1 / 6}\) \(x_{1}=\pm 2^{-\sqrt{3}}\)

Short Answer

Expert verified
2) What value of \(y_1\) did we derive from the calculations? 3) What value of \(x_1\) did we derive from the calculations?

Step by step solution

01

Identify the equations given

The equations given are: 1) \(xy^2 = 1\) 2) \(y^2 + 2xy \frac{dy}{dx} = 0\) 3) \(\frac{dy}{dx} = \frac{-y}{2x}\) 4) \(-\frac{dx}{dy} = \frac{2x}{y} = \frac{2}{y^3}\) 5) \(y - y_1 = \frac{2}{y_1^3}(x - x_1)\) 6) \(y_1^4 = 2x_1\) 7) \(y_1^6 = 2\)
02

Find the value of \(y_1\)

We will use equation (7) to evaluate the value of \(y_1\). $$y_1^6 = 2$$ Now, we can find the value of \(y_1\) using the equation above: $$y_1 = \pm 2^{\frac{1}{6}}$$
03

Find the value of \(x_1\)

Now that we have the value of \(y_1\), let's use equation (6) to find the value of \(x_1\). $$y_1^4 = 2x_1$$ Substitute \(y_1\) with \(\pm 2^{\frac{1}{6}}\): $$(\pm 2^{\frac{1}{6}})^4 = 2x_1$$ This gives: $$x_1 = \pm 2^{-\sqrt{3}}$$
04

Conclusion

Using the above steps, we have determined the related general solution of the given system of equations. We found \(y_1 = \pm 2^{\frac{1}{6}}\) and \(x_1 = \pm 2^{-\sqrt{3}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\mathrm{y}=\mathrm{x}^{2}+\mathrm{bx}-\mathrm{b}, \quad(1,1)\) lies on curve \(\frac{d y}{d x}=2 x+b=b+2\) eqn of tangent \(\Rightarrow y-1=(b+2)(x-1)\) \(x\) int \(\Rightarrow 1-\frac{1}{b+2}\) \(y\) int \(\Rightarrow 1-(b+2)\) Area of \(\Delta=\frac{1}{2} \frac{(b+1)^{2}}{(b+2)}\) \(\Rightarrow(b+1)^{2}=-4 b-8\) \(\Rightarrow b^{2}+6 b+9=0\) \((b+3)^{2}=0\) \(\Rightarrow b=-3\)

\(y=x^{3}-x^{2}-x+2\) \(\frac{d y}{d x}=3 x^{2}-2 x-1=0\) at \(x=1\) eqn of tangent \(y=1\) solving with curve, \(x^{3}-x^{2}-x+1=0\) \((x-1)\left(x^{2}-1\right)=0\) \(\mathrm{x}=\pm \mathrm{l}\)

Volume inhaled while exercising \(=\int_{0}^{4} 1.75 \sin \frac{\pi t}{2}\) dt \(=-1.75\left(\cos \frac{\pi t}{2}\right) \times \frac{2}{\pi}\) \(=\frac{7}{\pi}\) Difference \(=\frac{7}{\pi}-\frac{5.1}{\pi}\) \(=\frac{1.9}{\pi}\) Hence, B is correct Comprehension \(5:\) $\begin{aligned} x=& a(2 \cos t+\cos 2 t), \quad y=a(2 \sin t-\sin 2 t\\\ \frac{d x}{d t} &=a(-2 \sin t-2 \sin 2 t) \\\ &=-2 a[\sin t+2 \sin 2 t] \\ &=-2 a \sin t[1+2 \cos t] \\ \frac{d y}{d t} &=a[2 \cos t-2 \cos 2 t] \\ &=-2 a\left[2 \cos ^{2} t-\cos t-1\right] \\\ &=-2 a(\cos t-1)(2 \cos t+1) \end{aligned}$ $\frac{d y}{d x}=\frac{(\cos t-1)(2 \cos t+1)}{(\sin t)(1+2 \cos t)}=-\tan t / 2$ slope of normal \(=\cot t / 2 .\)

\(x^{2}+2 x y+2 y^{2}=45\) \(x+y+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-(x+y)}{x+2 y}=-2\) \(\Rightarrow x+y=2 x+4 y\) \(\Rightarrow x+3 y=0\) Put eq (II) in eq (I) \(9 y^{2}-6 y^{2}+2 y^{2}=45\) \(y=\pm 3\) \(x=\pm 9\) Pt \(\rightarrow(9,-3), \quad(-9,3)\)

$y=\sin ^{-1} 2 x \sqrt{1-x^{2}}= \begin{cases}2 \sin ^{-1} x & |x| \leq \frac{1}{\sqrt{2}} \\ \pi-2 \sin ^{-1} x & x>\frac{1}{\sqrt{2}} \\\ -\left(\pi+2 \sin ^{-1} x\right) & x<\frac{-1}{\sqrt{2}}\end{cases}$ \(\mathrm{x}=0, \mathrm{y}=0\) is only integral point where the function has a unique tangent

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free