Chapter 5: Problem 61
\(x \sin y+y \sin x=\pi\) \(\sin y+x \cos y \frac{d y}{d x}+\frac{d y}{d x} \sin x+y \cos x=0\) \(\frac{d y}{d x}=\frac{-(\sin y+y \cos x)}{x \cos y+\sin x}=-1\) eqn of tangent \(\rightarrow y=-x+\pi\)
Chapter 5: Problem 61
\(x \sin y+y \sin x=\pi\) \(\sin y+x \cos y \frac{d y}{d x}+\frac{d y}{d x} \sin x+y \cos x=0\) \(\frac{d y}{d x}=\frac{-(\sin y+y \cos x)}{x \cos y+\sin x}=-1\) eqn of tangent \(\rightarrow y=-x+\pi\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(\mathrm{l}_{1}=\mathrm{l}_{2}+\mathrm{l}_{2}^{3}+6\) $\frac{\mathrm{d} \mathrm{l}_{1}}{\mathrm{dt}}=\frac{\mathrm{dl}_{2}}{\mathrm{dt}}+3 \mathrm{l}_{2}^{2} \frac{\mathrm{dl}_{2}}{\mathrm{dt}}$ $\frac{\mathrm{d} \mathrm{S}_{2}}{\mathrm{dS}_{1}}=\frac{\mathrm{dS}_{2}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dS}_{1}}$ $=\frac{2 \mathrm{l}_{2} \mathrm{~d}_{2} / \mathrm{dt}}{2 \mathrm{l}_{1} \mathrm{dl}_{1} / \mathrm{dt}}$ \(=\frac{1}{4} \times \frac{1}{8}\)
\(y^{2}-2 y-8 x+17=0\) \(2 y \frac{d y}{d x}-2 \frac{d y}{d x}-8=0\) \(\frac{d y}{d x}=\frac{y}{y-1}=1\) \(\Rightarrow y=5, \quad x=4\)
\(f_{1}^{\prime}(x)=2 x-1 \quad \& \quad f_{2}^{\prime}(x)=3 x^{2}-2 x-2\) \(\Rightarrow 2 x_{1}-1=3 x_{2}^{2}-2 x_{2}-2\) \(\Rightarrow 3 x_{2}^{2}-2 x_{2}-2 x_{1}-1=0\) For \(\mathrm{x}_{2}\) be real, \(\mathrm{D} \geq 0\) \(4-4\left(2 x_{1}+1\right)(3)\) \(4-24 x_{1}-12\) \(\Rightarrow-\left(24 x_{1}+8\right)\) There can be infinite such values of \(\mathrm{x}_{\mathrm{l}}\)
If \(\mathrm{y}=-2\) is a tangent \(\Rightarrow \mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}+2=0 \quad\) will have only one real root \(\Rightarrow \mathrm{q}^{2}-4 \mathrm{p}(\mathrm{r}+2)=0\) \(=\mathrm{q}^{2}-4 \mathrm{pr}-8 \mathrm{p}=0\) \(\Rightarrow \mathrm{p}<0\) as \(\left(\mathrm{q}^{2}-4 \mathrm{pr}<0\right)\) \(\Rightarrow \mathrm{r}<0\)
\(x y^{2}=1\) \(y^{2}+2 x y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-y}{2 x}\) \(-\frac{d x}{d y}=\frac{2 x}{y}=\frac{2}{y^{3}}\) \(y-y_{1}=\frac{2}{y_{1}^{3}}\left(x-x_{1}\right)\) \(+y_{1}^{4}=2 x_{1}\) \(y_{1}^{6}=2\) \(y_{1}=\pm 2^{1 / 6}\) \(x_{1}=\pm 2^{-\sqrt{3}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.