Chapter 5: Problem 6
\(f^{\prime}(x)= \begin{cases}-2 x, & x<0 \\ 2 x, & x \geq 0\end{cases}\) eqn of tangent $\rightarrow \quad y-y_{1}=2 x_{1}\left(x-x_{1}\right), x \geq 0$ \(y-y_{2}=-2 x_{2}\left(x-x_{2}\right) x<0\)
Chapter 5: Problem 6
\(f^{\prime}(x)= \begin{cases}-2 x, & x<0 \\ 2 x, & x \geq 0\end{cases}\) eqn of tangent $\rightarrow \quad y-y_{1}=2 x_{1}\left(x-x_{1}\right), x \geq 0$ \(y-y_{2}=-2 x_{2}\left(x-x_{2}\right) x<0\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(y=2 x^{2}-x, \quad y=2-x^{3}\) Pt of intersection are \(2 \mathrm{x}^{2}-\mathrm{x}=2-\mathrm{x}^{3}\) \(\Rightarrow 2\left(x^{2}-1\right)+x\left(x^{2}-1\right)=0\) \(\Rightarrow\left(x^{2}-1\right)(x+2)=0\) \(\Rightarrow x=\pm 1,-2\) \(\Rightarrow(1,1),(-1,3),(-2,10)\) For \(\mathrm{y}=2 \mathrm{x}^{2}-\mathrm{x}\) \(\frac{d y}{d x}=4 x-1\) For \(y=2-x^{3}\) \(\frac{d y}{d x}=-3 x^{2}\) At \((1,1)\) $\theta=\tan ^{-1}\left(\frac{3+3}{1-9}\right)=\tan ^{-1}\left(\frac{3}{-4}\right)$ At \((-1,3)\) $\theta=\tan ^{-1}\left(\frac{-5+3}{1+15}\right)=\tan ^{-1}\left(\frac{1}{8}\right)$ At \((-2 ; 10)\) \(\theta=\tan ^{-1}\left(\frac{-9+12}{1+108}\right)=\tan ^{-1} \frac{3}{109}\)
\(P(t)=60 t^{2}-t^{3}\) \(P^{\prime}(t)=120 t-3 t^{2}=900\) \(\Rightarrow t^{2}-40 t+300=0\) \(t=10,30\)
\(\mathrm{A}=\frac{1}{2} \mathrm{x}^{2} \sin \theta\) $\frac{\mathrm{d} \mathrm{A}}{\mathrm{dt}}=\mathrm{x} \sin \theta \frac{\mathrm{dx}}{\mathrm{dt}}+\frac{\mathrm{x}^{2}}{2} \cos \theta \frac{\mathrm{d} \theta}{\mathrm{dt}}$ $\quad=12 \times \frac{1}{\sqrt{2}} \times \frac{1}{12}+\frac{144}{2} \times \frac{1}{\sqrt{2}} \times \frac{\pi}{180}$ \(=2^{1 / 2}\left(\frac{1}{2}+\frac{\pi}{5}\right)\)
\(x^{3 / 2}+y^{3 / 2}=2 a^{3 / 2}\) \(\frac{3}{2} x^{1 / 2}+\frac{3}{2} y^{1 / 2} \frac{d y}{d x}=0\) \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\frac{\mathrm{x}}{\mathrm{y}}}=-1\) \(\mathrm{y}=\mathrm{x}\) Putting in eqn \(x^{3 / 2}=a^{3 / 2}\) \(\Rightarrow \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}\)
\(\frac{d h_{4}}{d t}=0.5 t+2\) Integrating \(=\frac{t^{2}}{4}+2 t+5\) \(\frac{d h_{b}}{d t}=t+1\) Integrating, \(h_{b}=\frac{t^{2}}{2}+t+5\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.