Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(y=\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-4-\frac{x_{2}^{2}}{4}\right)^{2}\) Min value of \(y\) is shortest distance between \(y=x-4\) \& \(y=\frac{x^{2}}{4}\) slope of normal \(=-1\) \(\frac{d y}{d x}=\frac{x}{2}\) \(-\frac{d x}{d y}=\frac{-2}{x}=-1\) \(\mathrm{x}=2\)

Short Answer

Expert verified
Answer: The minimum value of the function is 20.

Step by step solution

01

Find the Intersection Points

First, we need to find the points where these two curves intersect. To do this, set \(x-4=\frac{x^{2}}{4}\).
02

Solve for \(x\)

Rearranging the equation from step 1 and solving for \(x\): $$x^{2}-4x+16=0$$ Let's solve the quadratic equation to find the possible values of \(x\): $$x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}=\frac{4\pm\sqrt{(-4)^{2}-4*16}}{2}=\frac{4\pm\sqrt{0}}{2}=2$$
03

Calculate the Corresponding \(y\)

To find the corresponding value of \(y\), plug \(x=2\) into either of the given equations. We'll use \(y=x-4\): $$y=2-4=-2$$
04

Verify the Slope of the Normal

Now, we need to verify whether the given slope of the normal is \(-1\) for the intersection point \((2,-2)\). Use the given equations of \(\frac{dy}{dx}=\frac{x}{2}\) and \(-\frac{dx}{dy}=\frac{-2}{x}=-1\): $$\frac{dy}{dx}=\frac{2}{2}=1$$ $$-\frac{dx}{dy}=\frac{-2}{2}=-1$$ Yes, the slope of the normal is \(-1\).
05

Calculate the Minimum Value of the Function

At the intersection point \((2,-2)\), plug in these values for \(x_{1}\) and \(x_{2}\) into the function \(y=\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-4-\frac{x_{2}^{2}}{4}\right)^{2}\): $$y=\left(2-(-2)\right)^{2}+\left(2-4-\frac{(-2)^{2}}{4}\right)^{2}=(4)^{2}+(-2)^{2}=16+4=20$$ The minimum value of the given function \(y\) is \(20\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(x^{3 / 2}+y^{3 / 2}=2 a^{3 / 2}\) \(\frac{3}{2} x^{1 / 2}+\frac{3}{2} y^{1 / 2} \frac{d y}{d x}=0\) \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\frac{\mathrm{x}}{\mathrm{y}}}=-1\) \(\mathrm{y}=\mathrm{x}\) Putting in eqn \(x^{3 / 2}=a^{3 / 2}\) \(\Rightarrow \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}\)

\(y=\left(\frac{x}{2}-a\right)^{2}+a-2\) \(4(y-(a-2))=(x-2 a)^{2}\) Vertex \(\Rightarrow \mathrm{h}=2 \mathrm{a}, \mathrm{k}=\mathrm{a}-2\) Locus of vertex \(\Rightarrow \mathrm{y}=\frac{\mathrm{x}}{2}-2\) \(\Rightarrow 2 y=x-4\)

\(\mathrm{y}=\mathrm{x}^{2}+\mathrm{bx}-\mathrm{b}, \quad(1,1)\) lies on curve \(\frac{d y}{d x}=2 x+b=b+2\) eqn of tangent \(\Rightarrow y-1=(b+2)(x-1)\) \(x\) int \(\Rightarrow 1-\frac{1}{b+2}\) \(y\) int \(\Rightarrow 1-(b+2)\) Area of \(\Delta=\frac{1}{2} \frac{(b+1)^{2}}{(b+2)}\) \(\Rightarrow(b+1)^{2}=-4 b-8\) \(\Rightarrow b^{2}+6 b+9=0\) \((b+3)^{2}=0\) \(\Rightarrow b=-3\)

$y=\sin ^{-1} 2 x \sqrt{1-x^{2}}= \begin{cases}2 \sin ^{-1} x & |x| \leq \frac{1}{\sqrt{2}} \\ \pi-2 \sin ^{-1} x & x>\frac{1}{\sqrt{2}} \\\ -\left(\pi+2 \sin ^{-1} x\right) & x<\frac{-1}{\sqrt{2}}\end{cases}$ \(\mathrm{x}=0, \mathrm{y}=0\) is only integral point where the function has a unique tangent

A) Area of \(\mathrm{ABCD}=2 \mathrm{Ar}(\triangle \mathrm{ABC})\) \(=2 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}\) \(=3 \times 2=6\) B) \(\mathrm{f}(\mathrm{x})=\frac{1}{\ln |\mathrm{x}|}\) is discontinous at \(x=0, \pm 1\) C) $f^{\prime}(x)=\lim _{n \rightarrow 0} \frac{f(x+n)-f(x)}{n}=\lim _{a \rightarrow 0} f(x)\left(\frac{f(n)-1)}{n}\right)$ \(=f(x) f^{\prime}(0)\) Put \(x=5\) \(f^{\prime}(5)=f(5) f^{\prime}(0)=6\) D) \(\tan \frac{3 \pi}{4}=-\frac{1}{f^{\prime}(3)}\) \(\Rightarrow f^{\prime}(3)=1\) \(A \rightarrow(R), B \rightarrow(Q), C \rightarrow(R), D \rightarrow(P)\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free