Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(y=x \ln x+\sin (\pi \ln x)\) \(\frac{d y}{d x}=1+\ln x+\cos (\pi \ln x) \frac{\pi}{x}\) at \(x=e\) \(\frac{d y}{d x}=2-\frac{\pi}{e}=\frac{2 e-\pi}{e}\) at \(x=e^{2}\) \(\frac{d y}{d x}=3+\frac{\pi}{e^{2}}=\frac{3 e^{2}+\pi}{e^{2}}\)

Short Answer

Expert verified
Answer: At \(x=e\), the derivative of the function is \(\frac{dy}{dx}= \frac{2e-\pi}{e}\), and at \(x=e^2\), the derivative is \(\frac{dy}{dx}= \frac{3e^2+\pi}{e^2}\).

Step by step solution

01

Find the derivative of y with respect to x

First, we need to differentiate the given function with respect to \(x\). Recall that you can differentiate each term separately using the Chain Rule, Power Rule, and Product Rule. For \(x \ln x\): 1. Differentiate \(x\): \(\frac{dx}{dx} = 1\) 2. Differentiate \(\ln x\): \(\frac{d(\ln x)}{dx} = \frac{1}{x}\) 3. Apply the Product Rule: \(\frac{d(x \ln x)}{dx} = x\left(\frac{1}{x}\right) + \ln x (1) = 1+\ln x\) For \(\sin(\pi \ln x)\): 1. Differentiate \(\sin(\pi \ln x)\): \(\frac{d(\sin (\pi \ln x))}{dx} = \cos(\pi \ln x) \cdot \frac{d(\pi \ln x)}{dx}\) 2. Differentiate \(\pi \ln x\): \(\frac{d(\pi \ln x)}{dx} = \pi \frac{d(\ln x)}{dx} = \pi \cdot \frac{1}{x}\) 3. Combine the terms: \(\frac{d(\sin (\pi \ln x))}{dx} = \cos(\pi \ln x) \cdot \frac{\pi}{x}\) Now, sum the derivatives of each term: \(\frac{dy}{dx} = (1 + \ln x) + \cos(\pi \ln x)\frac{\pi}{x}\)
02

Evaluate the derivative at x=e and x=e^2

Now, we will evaluate the derivative at \(x=e\) and \(x=e^2\). At \(x=e\): \(\frac{dy}{dx} = \left(1+\ln e\right) + \cos(\pi \ln e) \frac{\pi}{e} = 1+1+\cos(\pi) \frac{\pi}{e} = 2-\frac{\pi}{e} = \frac{2e-\pi}{e}\) At \(x=e^2\): \(\frac{dy}{dx} = \left(1+\ln e^2\right) + \cos(\pi \ln e^2) \frac{\pi}{e^2} = 1+2+\cos(2\pi) \frac{\pi}{e^2} = 3+\frac{\pi}{e^2} = \frac{3e^2+\pi}{e^2}\) Therefore, at \(x=e\), the derivative is \(\frac{dy}{dx}= \frac{2e-\pi}{e}\) and at \(x=e^2\), the derivative is \(\frac{dy}{dx}= \frac{3e^2+\pi}{e^2}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\(\mathrm{l}_{1}=\mathrm{l}_{2}+\mathrm{l}_{2}^{3}+6\) $\frac{\mathrm{d} \mathrm{l}_{1}}{\mathrm{dt}}=\frac{\mathrm{dl}_{2}}{\mathrm{dt}}+3 \mathrm{l}_{2}^{2} \frac{\mathrm{dl}_{2}}{\mathrm{dt}}$ $\frac{\mathrm{d} \mathrm{S}_{2}}{\mathrm{dS}_{1}}=\frac{\mathrm{dS}_{2}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dS}_{1}}$ $=\frac{2 \mathrm{l}_{2} \mathrm{~d}_{2} / \mathrm{dt}}{2 \mathrm{l}_{1} \mathrm{dl}_{1} / \mathrm{dt}}$ \(=\frac{1}{4} \times \frac{1}{8}\)

\(x^{2}+y^{2}-\frac{10}{3} y+1=0\) \(x^{2}+\left(y-\frac{5}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}\) \(y^{2}=x^{3}\) \(2 y y_{1}=3 x^{2}\) \(y_{1}=\frac{3 x^{2}}{2 y}\) Normal eqn \(\quad y-y_{1}=-\frac{2 y_{1}}{3 x_{1}^{2}}\left(x-x_{1}\right)\) as it passes through \(\left(0, \frac{5}{3}\right)\) \(\frac{5}{3}-y_{1}=\frac{2 y_{1}}{3 x_{1}}\) \(5-3 y_{1}=2 y^{1 / 3}\) \(5-9 y^{3}-225 y+135 y^{2}=8 y\) \(9 y^{3}+233 y-135 y^{2}-25=0\)

\(x=2-3 \sin \theta, \quad y=3+2 \cos \theta\) \(\left(\frac{x-2}{3}\right)^{2}+\left(\frac{y-3}{2}\right)^{2}=1 \Rightarrow\) eqn of ellipse end pts of major axis \(\rightarrow(-1,3) \&(5,3)\)

\(x^{3 / 2}+y^{3 / 2}=2 a^{3 / 2}\) \(\frac{3}{2} x^{1 / 2}+\frac{3}{2} y^{1 / 2} \frac{d y}{d x}=0\) \(\frac{\mathrm{dy}}{\mathrm{dx}}=-\sqrt{\frac{\mathrm{x}}{\mathrm{y}}}=-1\) \(\mathrm{y}=\mathrm{x}\) Putting in eqn \(x^{3 / 2}=a^{3 / 2}\) \(\Rightarrow \mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a}\)

\(y=\frac{a x}{1+x}=a-\frac{a}{1+x}\) \(\frac{d y}{d x}=\frac{a}{(1+x)^{2}}=-1\) \(a=-\left(1+x_{1}\right)^{2}\) eqn of tangent \(y-\frac{a x_{1}}{1+x_{1}}=-1\left(x-x_{1}\right)\) \(\mathrm{y}+\mathrm{x}=\mathrm{x}_{1}+\frac{\mathrm{ax}_{1}}{1+\mathrm{x}_{1}}\) \& \(y-3=-x \Rightarrow y+x=3\) \(\Rightarrow \mathrm{x}_{1}+\frac{\mathrm{ax}_{1}}{1+\mathrm{x}_{1}}=3\) \(\Rightarrow \mathrm{x}_{1}-\mathrm{x}_{1}\left(1+\mathrm{x}_{1}\right)=3\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free