Chapter 5: Problem 37
\(1^{2}=x^{2}+y^{2}\) \(1 \frac{d l}{d t}=x \frac{d x}{d t}+y \frac{d y}{d t}\) \(y=x^{3 / 2}\) \(\frac{d y}{d t}=\frac{3}{2} x^{1 / 2} \frac{d x}{d t}\) Using (1) \& (2) $11 \sqrt{x^{2}+x^{3}}=x \frac{d x}{d t}+\frac{3}{2} x^{3 / 2} x^{1 / 2} \frac{d x}{d t}$ \(\frac{d x}{d t}=\frac{66}{3+\frac{27}{2}}=\frac{66 \times 2}{33}=4\)