Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

\(y=1-a x^{2}\) \(\frac{d y}{d x}=-2 a x_{1}\) \& \(y=x^{2}\) \(\frac{d y}{d x}=2 x_{1}\) If curves are orthogonal, \(\mathrm{m}_{1} \mathrm{~m}_{2}=-1\) \(+4 a x^{2}=1\) Now \(1-a x^{2}=x^{2} \Rightarrow \frac{1}{1+a}=x^{2}\) Using eq (1), we get \(\frac{4 a}{1+a}=1\) \(\mathrm{a}=\frac{1}{3}\)

Short Answer

Expert verified
Answer: The value of 'a' for the curves to be orthogonal is \(\frac{1}{3}\).

Step by step solution

01

Finding the point of intersection

To find the point of intersection between the two curves, set the equations equal to each other: \(1 - ax^2 = x^2\) Solve for x: \(x^2 \cdot (1+a) = 1 \Rightarrow x^2 = \frac{1}{1+a}\)
02

Computing the derivatives

Compute the derivatives of both equations: 1. \(\frac{d(1-ax^2)}{dx} = -2ax\) 2. \(\frac{d(x^2)}{dx} = 2x\)
03

Checking if curves are orthogonal

To see if the curves are orthogonal at the point of intersection, their slopes should satisfy the condition \(m_1 \cdot m_2 = -1\). Substitute the derivatives and the point of intersection from Step 1: \((-2ax_1) \cdot (2x_1) = -1\) Substitute the value of \(x^2\) i.e \(\frac{1}{1+a}\) in the above equation and simplify: \(\frac{-4a}{1+a} = -1\)
04

Solving for 'a'

From Step 3, we have the equation: \(\frac{-4a}{1+a} = -1\) Solve for 'a': \(-4a = 1+a\) \(-a = \frac{1}{3}\) Hence, the value of 'a' for the curves to be orthogonal is \(\boxed{\frac{1}{3}}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

$\mathrm{S}=30\left(1-\mathrm{e}^{(\ln 5 / 6) 5}\right)=30\left(1-\left(\frac{5}{6}\right)^{5}\right)$

\(\mathrm{x}=\mathrm{t}^{2}+\mathrm{t}+1\) \(\frac{\mathrm{d} \mathrm{x}}{\mathrm{dt}}=2 \mathrm{t}+1\) \(\mathrm{y}=\mathrm{t}^{2}-\mathrm{t}+1\) \(\frac{\mathrm{dy}}{\mathrm{dt}}=2 \mathrm{t}-1\) \(\frac{d y}{\mathrm{~d} \mathrm{x}}=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\) $\Rightarrow \mathrm{y}-\left(\mathrm{t}^{2}-\mathrm{t}+1\right)=\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\left(\mathrm{x}-\left(\mathrm{t}^{2}+\mathrm{t}+1\right)\right)$ $\Rightarrow\left(\mathrm{t}-\mathrm{t}^{2}\right)=\left(\frac{2 \mathrm{t}-1}{2 \mathrm{t}+1}\right)\left(-\left(\mathrm{t}^{2}+\mathrm{t}\right)\right)$ $\Rightarrow 2 \mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-\mathrm{t}^{2}=\mathrm{t}^{2}+\mathrm{t}-2 \mathrm{t}^{3}-2 \mathrm{t}^{2}$ \(\Rightarrow 2 \mathrm{t}^{2}=0\) \(\Rightarrow \mathrm{t}=0\)

\(x^{2}+y^{2}-\frac{10}{3} y+1=0\) \(x^{2}+\left(y-\frac{5}{3}\right)^{2}=\left(\frac{4}{3}\right)^{2}\) \(y^{2}=x^{3}\) \(2 y y_{1}=3 x^{2}\) \(y_{1}=\frac{3 x^{2}}{2 y}\) Normal eqn \(\quad y-y_{1}=-\frac{2 y_{1}}{3 x_{1}^{2}}\left(x-x_{1}\right)\) as it passes through \(\left(0, \frac{5}{3}\right)\) \(\frac{5}{3}-y_{1}=\frac{2 y_{1}}{3 x_{1}}\) \(5-3 y_{1}=2 y^{1 / 3}\) \(5-9 y^{3}-225 y+135 y^{2}=8 y\) \(9 y^{3}+233 y-135 y^{2}-25=0\)

eqn of normal $\sin t / 2 y-a\left[2 \sin \frac{t}{2} \sin t-\sin 2 t \sin \frac{t}{2}\right]$ $$ =x \cos \frac{t}{2}-a\left[2 \cos t \cos \frac{t}{2}+\cos 2 t \operatorname{tos} \frac{t}{2}\right] $$ $\Rightarrow x \cos \frac{t}{2}-y \sin \frac{t}{2}=a\left[\begin{array}{c}2 \cos t \cos \frac{t}{2}-2 \sin t \sin \frac{t}{2} \\ +\cos 2 \operatorname{t} \cos \frac{t}{2}+\sin 2 t \sin \frac{t}{2}\end{array}\right]$ \(=a\left[2 \cos \frac{3 t}{2}+\cos \frac{3 t}{2}\right]\) \(=3 a \cos \frac{3 t}{2}\)

\(y=\left(x_{1}-x_{2}\right)^{2}+\left(x_{1}-4-\frac{x_{2}^{2}}{4}\right)^{2}\) Min value of \(y\) is shortest distance between \(y=x-4\) \& \(y=\frac{x^{2}}{4}\) slope of normal \(=-1\) \(\frac{d y}{d x}=\frac{x}{2}\) \(-\frac{d x}{d y}=\frac{-2}{x}=-1\) \(\mathrm{x}=2\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free