Chapter 5: Problem 27
\(y=2 x^{2}-x+1\) \(\frac{d y}{d x}=4 x_{1}-1\) \(4 x_{1}-1=3\) \(x_{1}=1\) \(y_{1}=2\)
Chapter 5: Problem 27
\(y=2 x^{2}-x+1\) \(\frac{d y}{d x}=4 x_{1}-1\) \(4 x_{1}-1=3\) \(x_{1}=1\) \(y_{1}=2\)
All the tools & learning materials you need for study success - in one app.
Get started for free\(y^{2}=x\left(2-x^{2}\right)\) \(2 y \frac{d y}{d x}=2-3 x^{2}\) \(\frac{d y}{d x}=\frac{-1}{2} \quad\) at \((1,1)\) eqn of tangent \(y-1=\frac{-1}{2}(x-1)\) \(2 y+x-3=0\) Solving with curve \(\left(\frac{3-x}{2}\right)^{2}=2 x-x^{3}\) \(4 x^{3}+x^{2}-14 x+9=0\)
$\mathrm{S}=30\left(1-\mathrm{e}^{(\ln 5 / 6) 5}\right)=30\left(1-\left(\frac{5}{6}\right)^{5}\right)$
A) Area of \(\mathrm{ABCD}=2 \mathrm{Ar}(\triangle \mathrm{ABC})\) \(=2 \times \frac{1}{2} \times \mathrm{BC} \times \mathrm{AB}\) \(=3 \times 2=6\) B) \(\mathrm{f}(\mathrm{x})=\frac{1}{\ln |\mathrm{x}|}\) is discontinous at \(x=0, \pm 1\) C) $f^{\prime}(x)=\lim _{n \rightarrow 0} \frac{f(x+n)-f(x)}{n}=\lim _{a \rightarrow 0} f(x)\left(\frac{f(n)-1)}{n}\right)$ \(=f(x) f^{\prime}(0)\) Put \(x=5\) \(f^{\prime}(5)=f(5) f^{\prime}(0)=6\) D) \(\tan \frac{3 \pi}{4}=-\frac{1}{f^{\prime}(3)}\) \(\Rightarrow f^{\prime}(3)=1\) \(A \rightarrow(R), B \rightarrow(Q), C \rightarrow(R), D \rightarrow(P)\)
\(\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2\) $\frac{n}{a}\left(\frac{x}{a}\right)^{n-1}+\frac{n}{b}\left(\frac{y}{b}\right)^{n-t} \frac{d y}{d x}=0$ \(\frac{d y}{d x}=-\frac{b^{n} x^{n-1}}{a^{n} y^{n-1}}=-\frac{b}{a}\)
\(P(t)=60 t^{2}-t^{3}\) \(P^{\prime}(t)=120 t-3 t^{2}=900\) \(\Rightarrow t^{2}-40 t+300=0\) \(t=10,30\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.