Chapter 5: Problem 23
$y=\sin ^{-1} 2 x \sqrt{1-x^{2}}= \begin{cases}2 \sin ^{-1} x & |x| \leq \frac{1}{\sqrt{2}} \\ \pi-2 \sin ^{-1} x & x>\frac{1}{\sqrt{2}} \\\ -\left(\pi+2 \sin ^{-1} x\right) & x<\frac{-1}{\sqrt{2}}\end{cases}$ \(\mathrm{x}=0, \mathrm{y}=0\) is only integral point where the function has a unique tangent