Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If \(\mathrm{y}=-2\) is a tangent \(\Rightarrow \mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}+2=0 \quad\) will have only one real root \(\Rightarrow \mathrm{q}^{2}-4 \mathrm{p}(\mathrm{r}+2)=0\) \(=\mathrm{q}^{2}-4 \mathrm{pr}-8 \mathrm{p}=0\) \(\Rightarrow \mathrm{p}<0\) as \(\left(\mathrm{q}^{2}-4 \mathrm{pr}<0\right)\) \(\Rightarrow \mathrm{r}<0\)

Short Answer

Expert verified
Answer: The line y = -2 will be a tangent to the quadratic equation when p < 0 and r > - (q^2 / 4p) - 2.

Step by step solution

01

Set the discriminant equal to zero

To find the quadratic equation with one real root, we need to set the discriminant equal to zero. So, \(\mathrm{q}^{2} - 4\mathrm{p}(\mathrm{r} + 2) = 0\).
02

Simplify the equation

Next, we simplify the equation by expanding. This gives us: \(\Rightarrow \mathrm{q}^{2} - 4\mathrm{pr} - 8\mathrm{p} = 0\)
03

Determine the inequality for p

Recall that discriminant is positive if the quadratic equation has two distinct real roots, negative if the equation has two imaginary roots, and zero if the quadratic equation has exactly one real root (a tangent). Since we want \(\mathrm{q}^{2} - 4\mathrm{pr} < 0\), we start by observing that: $$ \mathrm{p} < 0 $$
04

Determine the inequality for r

Now, to find the inequality for r, we can plug p back into the equation, \(\mathrm{q}^2 - 4\mathrm{pr} - 8\mathrm{p} = 0\). Since we know that \(\mathrm{p}<0\), we can divide the equation by \(-4\mathrm{p}\). Doing this gives: $$ -\frac{\mathrm{q}^2}{4\mathrm{p}} + \mathrm{r} + 2 > 0 $$ Rearrange the inequality to isolate r: $$ \Rightarrow \mathrm{r} > -\frac{\mathrm{q}^2}{4\mathrm{p}} - 2 $$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Let \(y=m x+\frac{1}{m}\) be tangent to \(y^{2}=4 x\) eqn of normal at \(\left(x_{1}, y_{1}\right)\) to \(x^{2}=4\) by is \(y-y_{1}=-\frac{2 b}{x_{1}}\left(x-x_{1}\right)\) \(\Rightarrow y=-\frac{2 b}{x_{1}} x+\frac{x_{1}^{2}}{4 b}+2 b\) Comparing two eqn \(\mathrm{m}=-\frac{2 \mathrm{~b}}{\mathrm{x}_{1}}\) \(\frac{\mathrm{x}_{1}^{2}}{4 \mathrm{~b}}+2 \mathrm{~b}=\frac{1}{\mathrm{~m}}\) Using (I) \& (II)

\(\mathrm{l}_{1}=\mathrm{l}_{2}+\mathrm{l}_{2}^{3}+6\) $\frac{\mathrm{d} \mathrm{l}_{1}}{\mathrm{dt}}=\frac{\mathrm{dl}_{2}}{\mathrm{dt}}+3 \mathrm{l}_{2}^{2} \frac{\mathrm{dl}_{2}}{\mathrm{dt}}$ $\frac{\mathrm{d} \mathrm{S}_{2}}{\mathrm{dS}_{1}}=\frac{\mathrm{dS}_{2}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dS}_{1}}$ $=\frac{2 \mathrm{l}_{2} \mathrm{~d}_{2} / \mathrm{dt}}{2 \mathrm{l}_{1} \mathrm{dl}_{1} / \mathrm{dt}}$ \(=\frac{1}{4} \times \frac{1}{8}\)

\(x y^{2}=1\) \(y^{2}+2 x y \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-y}{2 x}\) \(-\frac{d x}{d y}=\frac{2 x}{y}=\frac{2}{y^{3}}\) \(y-y_{1}=\frac{2}{y_{1}^{3}}\left(x-x_{1}\right)\) \(+y_{1}^{4}=2 x_{1}\) \(y_{1}^{6}=2\) \(y_{1}=\pm 2^{1 / 6}\) \(x_{1}=\pm 2^{-\sqrt{3}}\)

\(x^{4}+y^{4}=a^{4}\) \(x^{3}+y^{3} \frac{d y}{d x}=0\) \(\frac{d y}{d x}=\frac{-x^{3}}{y^{3}}\) eqn of tangent \(\rightarrow\) \(\mathrm{y}-\mathrm{y}_{1}=-\frac{\mathrm{x}_{1}^{3}}{\mathrm{y}_{1}^{3}}\left(\mathrm{x}-\mathrm{x}_{1}\right)\) \(\mathrm{p}=\frac{\mathrm{y}_{1}^{4}}{\mathrm{x}_{1}^{3}}+\mathrm{x}_{1}=\frac{\mathrm{x}_{1}^{4}+\mathrm{y}_{1}^{4}}{\mathrm{x}_{1}^{3}}=\frac{\mathrm{a}^{4}}{\mathrm{x}_{1}^{3}}\) \(\mathrm{q}=\mathrm{y}_{1}+\frac{\mathrm{x}_{1}^{4}}{\mathrm{y}_{1}^{3}}=\frac{\mathrm{a}^{4}}{\mathrm{y}_{1}^{3}}\) Now, \(\mathrm{p}^{-4 / 3}+\mathrm{q}^{-4 / 3}=\mathrm{a}^{-4 / 3}\)

\(y=6-x-x^{2}\) \(\frac{d y}{d x}=-1-2 x\) eqn of tangent $y-6+x_{1}+x_{1}^{2}=-\left(1+2 x_{1}\right)\left(x-x_{1}\right)$ \(x y=x+3\) \(x \frac{d y}{d x}+y=1\) \(\frac{d y}{d x}=\frac{1-y_{2}}{x}\) eqn of tangent \(\rightarrow\) \(y-\frac{x_{2}+3}{x_{2}}=\frac{1-\frac{x_{2}+3}{x_{2}}}{x_{2}}\left(x-x_{2}\right)\) \(x_{2} y-\left(x_{2}+3\right)=\frac{-3}{x_{2}}\left(x-x_{2}\right)\) Comparing the two eqns $\frac{1}{x_{2}}=\frac{-\left(1+2 x_{1}\right)}{-\frac{3}{x_{2}}}=\frac{x_{1}\left(1+2 x_{1}\right)+6-x_{1}-x_{1}^{2}}{3+x_{2}+3}$ $\frac{1}{x_{2}}=\frac{x_{2}\left(1+2 x_{1}\right)}{3} \& \frac{1}{x_{2}}=\frac{x_{1}^{2}+6}{x_{2}+6}$ \(3=x_{2}^{2}+2 x_{1} x_{2}^{2} \quad\) \& \(x_{2}+6=x_{1}^{2} x_{2}+6 x_{2}\) $3=\left(1+2 \mathrm{x}_{1}\right) \mathrm{x}_{2}^{2} \quad \& \quad \mathrm{x}_{2}=\frac{6}{5-\mathrm{x}_{1}^{2}}$ \(\Rightarrow 3=\frac{\left(1+2 x_{1}\right) 36}{\left(5-x_{1}^{2}\right)^{2}}\) $\Rightarrow\left(5-\mathrm{x}_{1}^{2}\right)^{2}=12\left(1+2 \mathrm{x}_{1}\right)$ Let \(\mathrm{y}=\mathrm{mx}+\mathrm{c}\) be the common tangent \(m x+c=6-x-x^{2}\) \(\Rightarrow \mathrm{x}^{2}+(\mathrm{m}+1) \mathrm{x}+(\mathrm{c}-6)=0\) \(\mathrm{D}=0\) \((m+1)^{2}-4(c-6)=0\) For \(x y=x+3\) \(x(m x+c)=x+3\) \(m x^{2}+(c-1) x-3=0\) \(\mathrm{D}=0\) \((c-1)^{2}+12 m=0\) Using (I) \& (II) \((m+1)^{2}+24=4 c\) \(\mathrm{c}-1=\frac{(\mathrm{m}+1)^{2}+20}{4}\) $\Rightarrow\left(\frac{(\mathrm{m}+\mathrm{l})^{2}+20}{4}\right)^{2}+12 \mathrm{~m}=0$ \(\left((m+1)^{2}+20\right)^{2}+192 m=0\) Upon solving, \(\mathrm{m}=-3\) \(\Rightarrow \mathrm{c}=7\) eqn of tangent \(=y=-3 x+7\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free