Chapter 4: Problem 97
Find \(\frac{\mathrm{dy}}{\mathrm{dx}}\)
Column-I
(A) $\sin ^{-1}\left(2 x
\sqrt{1-x^{2}}\right),\left(x<-\frac{1}{\sqrt{2}}\right)$
(B) $2 \sin ^{-1}\left(\sqrt{1-x}+\sin ^{-1}(2
\sqrt{x(1-x)}),\left(0
Chapter 4: Problem 97
Find \(\frac{\mathrm{dy}}{\mathrm{dx}}\)
Column-I
(A) $\sin ^{-1}\left(2 x
\sqrt{1-x^{2}}\right),\left(x<-\frac{1}{\sqrt{2}}\right)$
(B) $2 \sin ^{-1}\left(\sqrt{1-x}+\sin ^{-1}(2
\sqrt{x(1-x)}),\left(0
All the tools & learning materials you need for study success - in one app.
Get started for free$\begin{aligned} &f(x)=y=\sin ^{-1} \cos 2 x \\ &f(5)=\sin ^{-1} \cos 10=\frac{\pi}{2}-\cos ^{-1} \cos 10 \\ &=\frac{\pi}{2}-(4 \pi-10) \\ &=10-\frac{7}{2} \pi \\ &f^{\prime}(x)=\frac{-1}{\sqrt{1-\cos ^{2} 2 x}} \times 2 \sin 2 x \\ &\Rightarrow f^{\prime}(5)=2 \\ &f(5)+f^{\prime}(5)=12-7 \frac{\pi}{2} \end{aligned}$
$\begin{aligned} &\frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=k \\ &\text { As } \frac{d x}{d y}=\frac{1}{d y / d x} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}=\frac{-d^{2} y / d x^{2}}{(d y / d x)^{3}} \\ &\Rightarrow \frac{d^{2} x}{d y^{2}}\left(\frac{d y}{d x}\right)^{3}+\frac{d^{2} y}{d x^{2}}=0 \end{aligned}$
\(y=x^{2}\) \(\frac{d y}{d x}=2 x \quad \frac{d x}{d y}=\frac{1}{2 x}\) $\frac{d^{2} y}{d x^{2}}=2 \quad \frac{d^{2} x}{d y^{2}}=\frac{-1 \times 2}{(2 x)^{2}} \times \frac{d x}{d y}=\frac{-1}{2 x^{2}} \times \frac{1}{2 x}$ \(\frac{d^{2} y}{d x^{2}} \cdot \frac{d^{2} x}{d y^{2}}=\frac{-1}{2 x^{3}}\)
\(f(x)=\ln \sin x\) \(f^{\prime}(x)=\frac{1}{\ln \sin x} \times \frac{1}{\sin x} \times \cos x\) \(f^{\prime}\left(\frac{\pi}{6}\right)=\frac{-1}{\ln 2} \times \sqrt{3}\)
Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.