Chapter 4: Problem 82
The value of \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at the point where \(\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})\) is (A) 0 (B) \(\frac{1}{2}\) (C) 1 (D) 2
Chapter 4: Problem 82
The value of \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}\) at the point where \(\mathrm{f}(\mathrm{t})=\mathrm{g}(\mathrm{t})\) is (A) 0 (B) \(\frac{1}{2}\) (C) 1 (D) 2
All the tools & learning materials you need for study success - in one app.
Get started for free$\begin{aligned} &x^{2}+y^{2}=a^{2} \\ &2 x+2 y y^{\prime}=0 \Rightarrow \frac{x}{y}=-y^{\prime} \\ &1+\left(y^{\prime}\right)^{2}+y y^{\prime \prime}=0 \Rightarrow y=\frac{-\left(1+\left(y^{\prime}\right)^{2}\right)}{y^{\prime \prime}} \end{aligned}$ Using, (I), (II) \& (III) $\begin{aligned} &\left(\mathrm{y}^{\prime}\right)^{2}+1=\frac{\mathrm{a}^{2}\left(\mathrm{y}^{\prime \prime}\right)^{2}}{\left(1+\left(\mathrm{y}^{\prime}\right)^{2}\right)^{4}} \Rightarrow \frac{1}{\mathrm{a}^{2}}=\frac{\left(\mathrm{y}^{\prime \prime}\right)^{2}}{\left(1+\left(\mathrm{y}^{\prime}\right)^{2}\right)^{2}\left(1+\left(\mathrm{y}^{\prime}\right)^{2}\right)} \\\ &\Rightarrow \mathrm{K}=\frac{\left|\mathrm{y}^{\prime \prime}\right|}{\sqrt{\left(1+\left(\mathrm{y}^{\prime}\right)^{2}\right)^{3}}} \end{aligned}$
Assertion \((A):\) If \(y=\tan ^{-1}(\cot x)+\cot ^{-1}(\tan x), \pi / 2
Assertion \((\mathbf{A}):\) If the function $\mathrm{f}(\mathrm{x})-\mathrm{f}(2 \mathrm{x})\( has derivative 5 at \)x=1\( and derivative 7 at \)x=2$, then the derivative of \(f(x)-f(4 x)\) at \(x=1\) is 19. Reason \((\mathbf{R}):\) Let \(g(x)=f(x)-f(2 x)\) Then $\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{f}(\mathrm{x})-\mathrm{f}(4 \mathrm{x}))=\mathrm{g}^{\prime}(\mathrm{x})+\mathrm{g}^{\prime}(2 \mathrm{x})$.
If \(\mathrm{f}(\mathrm{x})=|\ln | \mathrm{x} \|\), then \(\mathrm{f}^{\prime}(\mathrm{x})\) equals (A) \(\frac{-\operatorname{sgn} \mathrm{x}}{|\mathrm{x}|}\), for \(|\mathrm{x}|<1\), where \(\mathrm{x} \neq 0\) (B) \(\frac{1}{x}\) for \(|x|>1\) and \(-\frac{1}{x}\) for \(|x|<1, x \neq 0\) (C) \(-\frac{1}{x}\) for \(|x|>1\) and \(\frac{1}{x}\) for \(|x|<1\) (D) \(\frac{1}{x}\) for \(|x|>0\) and \(-\frac{1}{x}\) for \(x<0\)
If for some differentiable function \(\mathrm{f}, \mathrm{f}(\alpha)=0\) and \(\mathrm{f}^{\prime}(\alpha)=0\). Assertion (A) : The sign of \(\mathrm{f}(\mathrm{x})\) does not change in the neighbourhood of \(\mathrm{x}=\alpha\). Reason \((\mathbf{R}): \alpha\) is repeated root of \(\mathrm{f}(\mathrm{x})=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.