$\begin{aligned}
&\text { A) } \begin{array}{l}
y^{2}+4=\left(\sec ^{n} \theta+\cos ^{n} \theta\right)^{2} \quad \ \\
x^{2}+4=(\sec \theta+\cos \theta)^{2} \\
\frac{d x}{d \theta}=\sec \theta \tan \theta+\sin \theta \\
\frac{d y}{d \theta}=n \sec ^{n-1} \theta \sec \theta \tan \theta+n \cos
^{n-1} \theta \sin \theta \\
\left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left(\sec ^{n} \theta \tan
\theta+\cos ^{n} \theta \tan \theta\right)^{2}}{\tan ^{2} \theta(\sec
\theta+\cos \theta)^{2}} \\
=\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4}
\end{array}
\end{aligned}$
$\begin{aligned}
&\text { B) }\\\
&\text { Put } t=\tan \theta\\\
&x=0, \quad y=0\\\
&\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=1 \quad
\frac{\mathrm{dy}}{\mathrm{d} \theta}=1\\\
&\Rightarrow \frac{d y}{d x}=1
\end{aligned}$
$\begin{aligned}
&\text { C) }\\\
&\mathrm{e}^{y}+x y=e\\\
&\begin{aligned}
&\mathrm{e}^{y} \mathrm{y}^{\prime}+\mathrm{xy}^{\prime}+\mathrm{y}=0 \\
&\mathrm{e}^{\mathrm{y}} \mathrm{y}^{\prime
\prime}+\mathrm{e}^{y}\left(\mathrm{y}^{\prime}\right)^{2}+\mathrm{y}^{\prime}+\mathrm{xy}^{\prime
\prime}+\mathrm{y}^{\prime}=0
\end{aligned}
\end{aligned}$
$\begin{aligned}
&\text { For } x=0, y=1 \\
&y^{\prime \prime}=\frac{-\left(e\left(y^{\prime}\right)^{2}+2
y^{\prime}\right)}{e} \\
&=\frac{-1}{e}\left(\frac{1}{e}-\frac{2}{e}\right)=\frac{1}{e^{2}}
\end{aligned}$
$\begin{aligned}
&\text { D) } \phi(x)=f(x) g(x) \\
&\phi^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
&\phi^{\prime \prime}(x)=f^{\prime \prime}(x) g(x)+2 f^{\prime}(x)
g^{\prime}(x)+f(x) g^{\prime}(x) \\
&\frac{\phi^{\prime \prime}(x)}{\phi(x)}=\frac{f^{\prime
\prime}(x)}{f(x)}+\frac{g^{\prime \prime}(x)}{g(x)}+\frac{2
f^{\prime}(x)}{f(x)} \frac{g^{\prime}(x)}{g(x)}
\end{aligned}$