Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assertion (A) : Let \(f: R \rightarrow R\) be a smooth function such that \(\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{f}(1-\mathrm{x})\) for all \(\mathrm{x}\) and \(\mathrm{f}(0)=1 .\) Then \(\mathrm{f}(\mathrm{x})=\cos\) \(x+(\sec 1+\tan 1) \sin x\) Reason (R) : Differentiating the given equation gives $f^{\prime \prime}(x)=-f(x)\(. This has solution of the form \)f(x)=A \cos x+$ \(\mathrm{B} \sin \mathrm{x}\), when \(\mathrm{A} \& \mathrm{~B}\) are determined by the boundary conditions.

Short Answer

Expert verified
Question: Show that the smooth function f(x) with f'(x) = f(1-x) for all x and f(0) = 1 is given by f(x) = cos(x) + (sec(1) + tan(1)) sin(x). Answer: Following the given steps, we find that the function f(x) is indeed given by f(x) = cos(x) + (sec(1) + tan(1)) sin(x).

Step by step solution

01

Finding the second derivative

Differentiate the given equation, f'(x) = f(1-x), with respect to x: \(f^{\prime\prime}(x)=-f^\prime(1-x)\) Using the original equation f'(x) = f(1-x) to replace f'(1-x), we get \(f^{\prime\prime}(x)=-f(x)\)
02

Solving the second order differential equation

We now solve the second-order linear ordinary differential equation: \(f^{\prime\prime}(x) + f(x) = 0\) The general solution for this ODE is given by: \(f(x) = A\cos(x) + B\sin(x)\) for constants A and B.
03

Using the boundary condition to find A

Use the boundary condition f(0) = 1 to find the constant A: \(f(0) = A\cos(0) + B\sin(0) = 1\) Since \(\cos(0) = 1\) and \(\sin(0) = 0\): \(A = 1\)
04

Using the derivative to find B

Compute the derivative of f(x): \(f^\prime(x) = -A\sin(x) + B\cos(x)\) Now, plug the given condition f'(x) = f(1-x) into the equation: \(f^\prime(x) = A\cos(1-x) + B\sin(1-x)\) Next, use the fact that \(f^\prime(1) = f(0)\): \(-A\sin(1) + B\cos(1) = A\cos(1-x) + B\sin(1-x)\) Substitute the known values \(A = 1\): \(-1\sin(1) + B\cos(1) = 1\) Since the condition f'(1) = f(0) must hold, we can solve for B: \(B\cos(1) = 1 + \sin(1)\) Thus, \(B = \frac{1 + \sin(1)}{\cos(1)} = \sec(1) + \tan(1)\)
05

Combining the results

Finally, we substitute A = 1 and B = (sec(1) + tan(1)): \(f(x) = \cos(x) + (\sec(1) + \tan(1))\sin(x)\) This verifies the assertion.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)

$\begin{aligned} &f(x)=\frac{a+\sqrt{a^{2}-x^{2}}+x}{a+\sqrt{a^{2}-x^{2}}-x}=1+\frac{2 x}{a+\sqrt{a^{2}-x^{2}}-x} \\ &\text { Put } x=a \sin \theta \\ &\Rightarrow \frac{d x}{d \theta}=a \cos \theta \\ &y=f(x)=1+\frac{2 \sin \theta}{1+\cos \theta-\sin \theta} \\ &\frac{d y}{d \theta}=\frac{(1+\cos \theta-\sin \theta) 2 \cos \theta}{(1+\cos \theta-\sin \theta)^{2}}+2 \sin \theta(\sin \theta+\cos \theta) \\ &=\frac{2 \cos \theta+2}{(1+\cos \theta-\sin 0)^{2}} \\ &\frac{d y}{d x}=\frac{2(1+\cos \theta)}{(1+\cos \theta-\sin \theta)^{2}} \times \frac{1}{a \cos \theta} \\ &\text { At } x=0, \theta=0 \\ &\frac{d y}{d x}=\frac{1}{a} \end{aligned}$

\(y=\tan ^{-1} \frac{\left(3 a^{2} x-x^{3}\right)}{a^{3}-3 x^{2} a}\) $y=\tan ^{-1} \frac{\left(3 x / a-(x / a)^{3}\right.}{1-3(x / a)^{2}}=3 \tan ^{-1}\left(\frac{x}{a}\right)$ $\mathrm{y}^{\prime}=3 \times \frac{1}{1+\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}} \times \frac{1}{\mathrm{a}}=\frac{3 \mathrm{a}}{\mathrm{a}^{2}+\mathrm{x}^{2}}$

$\begin{aligned} &f(x)=\left|x^{2}-3\right| x|+2| \\ &f(x)= \begin{cases}x^{2}-3 x+2, & 02 \\ x^{2}+3 x+2, & -1

$\begin{aligned} &a x^{3}+b x^{2}+b x+d=0\\\ &3 a x^{2}+2 b x+b=0\\\ &\Rightarrow 3 \mathrm{a}+3 \mathrm{~b}=0 \quad \text { (as } 1 \text { is repeated root) }\\\ &\Rightarrow a+b=0\\\ &\text { Now, a }+b+b+d=0\\\ &\Rightarrow \mathrm{b}+\mathrm{d}=0 \end{aligned}$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free