Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Assertion \((\mathbf{A}):\) Let \(g(x)=f(x) \sin x\), where \(f(x)\) is a twice differentiable function on \((-\infty, \infty)\) such that \(\mathrm{f}^{\prime}(-\pi)=1\). The value of \(g^{\prime \prime}(-\pi)\) equals \(-2\). Reason \((\mathbf{R}):\) We have $g^{\prime \prime}(x)=f(x)(-\sin x)+f^{\prime}(x) \cos x+\( \)\mathrm{f}^{\prime}(\mathrm{x}) \cos x+\mathrm{f}^{\prime \prime}(\mathrm{x}) \sin \mathrm{x}$. Hence \(\mathrm{g}^{\prime \prime}(-\pi)=-2\)

Short Answer

Expert verified
Question: Verify that the second derivative of the function \(g(x) = f(x) \sin x\) at \(x = -\pi\) is equal to -2, given that \(f'(x)\) is a twice differentiable function and \(f'(-\pi) = 1\). Solution: We found the second derivative of \(g(x)\) to be \(g''(x) = f''(x) \sin x + 2f'(x) \cos x - f'(x) \sin x\). At \(x = -\pi\) and given \(f'(-\pi) = 1\), we have \(g''(-\pi) = -2\), verifying the given information.

Step by step solution

01

Find the first derivative of \(g(x)\)

To find the first derivative of \(g(x)=f(x) \sin x\), we apply the product rule: \((uv)' = u'v + uv'\) Here, \(u = f(x)\) and \(v = \sin x\) \(g'(x) = f'(x) \sin x + f(x) \cos x\)
02

Find the second derivative of \(g(x)\)

Now, we will find the second derivative of \(g(x)\) by differentiating \(g'(x)\). First, we differentiate \(f'(x) \sin x\): \((f'(x) \sin x)' = f''(x) \sin x + f'(x) \cos x\) Next, we differentiate \(f(x) \cos x\): \((f(x) \cos x)' = f'(x)(-\sin x) + f''(x) \cos x\) Now, we add both the above derivatives together: \(g''(x) = f''(x) \sin x + f'(x) \cos x + f'(x)(-\sin x) + f''(x) \cos x\) Simplifying, we get: \(g''(x) = f''(x) \sin x + 2f'(x) \cos x - f'(x) \sin x\)
03

Use given information to find the value of \(g''(-\pi)\)

We are given that \(f'(-\pi) = 1\) and \(g''(-\pi) = -2\). We will use this information to find the value of \(g''(-\pi)\). \(g''(-\pi) = f''(-\pi) \sin (-\pi) + 2f'(-\pi) \cos (-\pi) - f'(-\pi) \sin (-\pi)\) Since \(f'(-\pi) = 1\), \(g''(-\pi) = f''(-\pi) \sin (-\pi) + 2(1) \cos (-\pi) - 1 \sin (-\pi)\) We know that \(\sin (-\pi) = 0\) and \(\cos (-\pi) = -1\), so \(g''(-\pi) = f''(-\pi)(0) + 2(-1) - 1 (0)\) \(g''(-\pi) = -2\) Thus, we have verified that the value of \(g''(-\pi) = -2\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Column-I (A) If \(y=3 e^{2 x}+2 e^{3 x}\) and \(\frac{d^{2} y}{d x^{2}}+\) a. $\frac{d y}{d x}+b y=0\(. where a and \)\mathrm{b}$ are real numbers, then \(\mathrm{a}+\mathrm{b}=\) (B) $\lim _{x \rightarrow 0^{+}}\left((x \cos x)^{x}+(x \sin x)^{1 / x}\right)=$ (C) If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\sin x}+(\sin \mathrm{x})^{\cos \mathrm{x}}\(, then \)\mathrm{f}^{\prime}\left(\frac{\pi}{2}\right)$ (D) Number of positive integer values of \(\mathrm{x}>4\) and satisfying the inequality \(\sin ^{-1}(\sin 5)<4 x-x^{2}+2\) is Column-II (P) \(\frac{\pi}{2}\) (Q) \(-1\) (R) 0 (S) 1

\(y=\tan ^{-1}\left(\frac{2^{x}}{1+2^{x} \cdot 2}\right)\) $y^{\prime}=\frac{1}{1+\left(\frac{2^{x}}{1+2^{x+1}}\right)^{2}} \times \frac{\left(1+2^{x+1}\right) 2^{x} \ln 2-2^{x}}{\left(1+2^{x+1}\right)^{2}} 2^{x+1} \ln 2$ $y_{\text {at } x=0}^{\prime}=\frac{9}{10} \times \frac{\ln 2}{9}=\frac{\ln 2}{10}$

$\begin{aligned} &f(x)=\sin x+\ln x \\ &f\left(x^{2}\right)=\sin x^{2}+\ln x^{2} \\ &2 x f^{\prime}\left(x^{2}\right)=2 x \cos x^{2}+\frac{2}{x} \\ &f^{\prime}\left(x^{2}\right)=\cos x^{2}+\frac{1}{x^{2}} \end{aligned}$

Let the function \(f\) satisfy the relation, \(f\left(x+y^{3}\right)=f(x)+f\left(y^{3}\right)\), $\forall \mathrm{x}, \mathrm{y} \in \mathrm{R}\( and be differentiable for all \)\mathrm{x}$. Assertion \((\mathbf{A}):\) If \(f^{\prime}(2)=a\), then \(f^{\prime}(-2)=a\). Reason \((\mathbf{R}): \mathrm{f}(\mathrm{x})\) is an odd function

\(x=a \cos t+\frac{b}{2} \cos 2 t, \quad y=a \sin t+\frac{b}{2} \sin 2 t\) $\frac{d x}{d t}=-a \sin t-b \sin 2 t, \quad \frac{d y}{d t}=a \cos t+b \cos 2 t$ \(\frac{d y}{d x}=\frac{-(a \cos t+b \cos 2 t)}{a \sin t+b \sin 2 t}\) $\frac{d^{2} y}{d x^{2}}=\left[\begin{array}{l}\frac{(a \sin t+b \sin 2 t)(+a \sin t+2 b \sin 2 t)}{(a \sin t+b \sin 2 t)^{2}} \\ +(a \cos t+b \cos 2 t)(a \cos t+2 b \cos 2 t)\end{array}\right] \times \frac{1}{-(a \sin t+b \sin 2 t)}$ For \(\frac{d^{2} y}{d x^{2}}=0\) \((a \sin t+b \sin 2 t)(a \sin t+2 b \sin 2 t)+(a \cos t+b \cos 2 t)\) \((a \cos t+2 b \cos 2 t)=0\) \(\Rightarrow a^{2}+2 b^{2}+a b \cos t+2 a b \cos t=0\) \(\Rightarrow \cos t=\frac{-\left(a^{2}+2 b^{2}\right)}{3 a b}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free